Author: novelconjugates

Superior anti-neoplastic activities of triacontanol-PEG conjugate: synthesis, characterization and biological evaluations

No Comments

Triacontanol (TA, C30H62O), abundantly present in plant cuticle waxes and bee waxes, has been found to display promising anti-neoplastic potentials. As a long chain fatty alcohol, TA possesses limited aqueous solubility, which hinders its medicinal application. To overcome its solubility barrier, a polymer prodrug was synthesized through attaching TA to poly ethylene glycol (PEG), using succinic acid as a linker with bifunctional amide and ester bonds. Anti-neoplastic effects of PEG-TA were assessed in LoVo and MCF7 cells, anti-proliferative and apoptosis-inducing activities were subsequently confirmed in mouse xenograft model. Encouragingly, PEG-TA possessed selective anti-cancer ability. It did not exhibit significant cytotoxicity on normal cells. Mechanistic examination revealed inhibition of NF-κB nuclear translocation, suppression on matrix degradation enzyme and down-regulation of angiogenic signaling might contribute to its anti-malignant effects. Pharmacokinetics clearly indicated PEGylated TA (named as mPEG2K-SA-TA) substantially enhanced TA delivery with increased plasma exposure (19,791 vs. 336.25 ng·mL−1·h−1,p < .001), mean residence time (8.46 vs. 2.95 h, p < .001) and elimination half-life (7.78 vs. 2.57 h, p < .001) compared to those of original TA. Moreover, mPEG2K-SA-TA appeared to be safe in preliminary toxicological assessment. PEGylated TA also emerged as a functional carrier to deliver hydrophobic chemotherapeutic agents, since it readily self-assembled to micelles in aqueous solution with a low critical micelle concentration (CMC, 19.1 µg·mL−1). Conclusively, PEG-TA conjugate displayed superior anti-neoplastic activities and low toxicity, as well as facilitated the delivery of other hydrophobic agents, which appeared to be an innovative strategy for cancer therapy.(Drug Deliv. 2018; 25(1): 1546–1559.)

Self-assembled nanoparticles based on chondroitin sulfate-deoxycholic acid conjugates for docetaxel delivery: Effect of degree of substitution of deoxycholic acid

No Comments

Hydrophobically-modified polymers based on chondroitin sulfate with different degree of substitution (DS) of deoxycholic acid (DOCA) were developed for docetaxel delivery. Chondroitin sulfate-deoxycholic acid (CSAD) bioconjugates were synthesized via the linker of adipic dihydrazide by amide bond. They were characterized with spherical shape, mean diameter of around 165.2 nm and negative zeta potential (⿿14.87 to ⿿20.53 mV). An increase of DOCA DS reduced size of nanoparticles, while increasing drug loading efficiency. Drug release in vitro showed a triphasic sustained pattern and higher accumulative drug release percentage was observed with increased DS of DOCA on polymer. Self-assemblies with higher DS also had enhanced internalization of nanoparticles and stronger cytotoxicity at the cellular level. The self-assemble nanoparticles demonstrate to be excellent targeting drug delivery systems and the desired therapeutics can be achieved via the alteration of DS.(Colloids and Surfaces B: Biointerfaces. Volume 146, 1 October 2016, Pages 235-244.)

Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases

No Comments

Polysaccharides (PSs) have been extensively studied in healthcare applications; here, we focus our attention on their use as components of nanomaterials in the management of cancer and inflammatory pathologies. Key advantages of PSs are easy availability, general biodegradability and biocompatibility, low or negligible toxicity, often a low immunogenicity and finally an ease of chemical modification. Here, we pay particular attention to the large family of amphiphilic PS derivatives (AMPDs); they are synthesized by modifying hydrophilic PSs with a variety of hydrophobic groups, which allow the constructs to self-assemble into various nanostructures in aqueous solution. This review focuses on AMPD-based self-assembled nanoparticles, from the chemical synthesis of AMPDs, through nanoparticle preparative strategies, to the most recent applications in cancer and inflammation management, including therapeutics, imaging and theranostics. We also offer an overview, which we feel lacks in the current literature, of the relation between the nature of the hydrophilic PSs and that of the hydrophobic components, of linkers, targeting groups and cross-linkers, and of the actual properties and in vivo fate of AMPD-based nanoparticles. Finally, we believe that this comprehensive insight into the possible effects of AMPDs’ structural components on the performance of nanosystems, can provide criteria for a rational and molecular level-based design of AMPDs. (Journal of Controlled Release. Volume 272, 28 February 2018, Pages 114-144.)

Effects of Chemical Conjugation of l-Leucine to Chitosan on Dispersibility and Controlled Release of Drug from a Nanoparticulate Dry Powder Inhaler Formulation

No Comments

This study investigated l-leucine-conjugated chitosan as a drug delivery vehicle in terms of dispersibility and controlled release from a nanoparticulate dry powder inhaler (DPI) formulation for pulmonary delivery using diltiazem hydrochloride (DH) as the model drug. DH-loaded nanoparticles of chitosan and conjugate were prepared by water-in-oil emulsification followed by glutaraldehyde cross-linking. Nanoparticles were characterized by dynamic light scattering for particle size, X-ray photoelectron spectroscopy for surface composition, and twin stage impinger for drug dispersibility. The controlled release of DH was studied in phosphate-buffered saline (pH 7.3 ± 0.2, 37 °C) using UV spectrophotometry. The fine particle fractions of conjugated chitosan with and without drug were higher than those of nonconjugated chitosan nanoparticles. The conjugate nanoparticles were superior to those of unmodified chitosan in drug loading, entrapment efficiency, and controlled release profile. The higher dispersibility was attributed to the amphiphilic environment of the l-leucine conjugate and hydrophobic cross-links, and the release profile reflects the greater swelling. The conjugated chitosan nanoparticles could be useful, after appropriate testing for biodegradability and toxicity, as an alternative carrier for lung drug delivery with enhanced aerosolization and prolonged drug release from nanoparticulate DPI formulations. (Mol Pharm. 2016 May 2;13(5):1455-66. )

Carnosine-LVFFARK-NH2 Conjugate: A Moderate Chelator but Potent Inhibitor of Cu2+-Mediated Amyloid β-Protein Aggregation

No Comments

Aggregation of amyloid-β (Aβ) protein stimulated by Cu2+ has been recognized as a crucial step in the neurodegenerative process of Alzheimer’s disease. Hence, it is of significance to develop bifunctional agents capable of inhibiting Aβ aggregation as well as Cu2+-mediated Aβ toxicity. Herein, a novel bifunctional nonapeptide, carnosine-LVFFARK-NH2 ( Car-LK7), was proposed by integrating native chelator carnosine ( Car) and an Aβ aggregation inhibitor, Ac-LVFFARK-NH2 (LK7). Results revealed the bifunctionality of Car-LK7, including remarkably enhanced inhibition capability on Aβ aggregation as compared to LK7 and a moderate Cu2+ chelating affinity ( KD = 28.2 ± 2.1 μM) in comparison to the binding affinity for Aβ40 ( KD = 1.02 ± 0.13 μM). The moderate Cu2+ affinity was insufficient for Car-LK7 to sequester Cu2+ from Aβ40-Cu2+ species, but it was sufficient to form ternary Aβ40-Cu2+- Car-LK7 complexes. Formation of the ternary complexes directed the aggregation into small, unstructured aggregates with little β-sheet structure. Car-LK7 also showed higher activity on arresting Aβ40-Cu2+-catalyzed reactive oxygen species production than Car. Cell viability assays confirmed the prominent protection activity of Car-LK7 against Cu2+-mediated Aβ40 cytotoxicity; Car-LK7 could almost eliminate Aβ40 cytotoxicity at an equimolar dose (cell viability increased from 59% to 99%). The research has thus provided new insight into the design of potent bifunctional agents against metal-mediated amyloid toxicity by conjugating moderate metal chelators and existing inhibitors. (ACS Chem Neurosci. 2018 Nov 21;9(11):2689-2700.)

‘Dual’ peptidyl-oligonucleotide conjugates: Role of conformational flexibility in catalytic cleavage of RNA

No Comments

Traditional therapeutic interventions against abnormal gene expression in disease states at the level of expressed proteins are becoming increasingly difficult due to poor selectivity, off-target effects and associated toxicity. Upstream catalytic targeting of specific RNA sequences offers an alternative platform for drug discovery to achieve more potent and selective treatment through antisense interference with disease-relevant RNAs. We report a novel class of catalytic biomaterials, comprising amphipathic RNA-cleaving peptides placed between two RNA recognition motifs, here demonstrated to target the TΨC loop and 3′- acceptor stem of tRNAPhe. These unique peptidyl-oligonucleotide ‘dual’ conjugates (DCs) were created by phosphoramidate or thiol-maleimide conjugation chemistry of a TΨC-targeting oligonucleotide to the N-terminus of the amphipathic peptide sequence, followed by amide coupling of a 3′-acceptor stem-targeting oligonucleotide to the free C-terminal carboxylic acid functionality of the same peptide. Hybridization of the DCs bearing two spatially-separated recognition motifs with the target tRNAPhe placed the peptide adjacent to a single-stranded RNA region and promoted cleavage within the ‘action radius’ of the catalytic peptide. Up to 100% cleavage of the target tRNAPhe was achieved by the best candidate (i.e. DC6) within 4 h, when conformational flexibility was introduced into the linker regions between the peptide and oligonucleotide components. This study provides the strong position for future development of highly selective RNA-targeting agents that can potentially be used for disease-selective treatment at the level of messenger, micro, and genomic viral RNA. (Biomaterials 112 (2017) 44e61)

Cyclodextrin-siRNA conjugates as versatile gene silencing agents

No Comments

Functional siRNAs (luciferase and PLK1) have been conjugated to β-cyclodextrin and the ability of the conjugates to retain gene knockdown activity has been assessed by delivery to cancer cell lines using various formulations. Initially two formulations used complexation with polycations, namely Lipofectamine 2000 and an amphiphilic polycationic cyclodextrin. Gene knockdown results for human glioblastoma cells (U87) and prostate cancer cells (PC3, DU145) showed that conjugation to the cyclodextrin did not reduce gene silencing by the RNA. A third mode of delivery involved formation of targeted nanoparticles in which the conjugate was first complexed with adamantyl-PEG-ligands (targeting ligand RVG peptide or dianisamide) by adamantyl inclusion in the cyclodextrin cavities of the conjugates, followed by charge neutralisation with the cationic polymer chitosan. Enhanced knockdown was achieved by these ligand-targeted formulations. In summary, while this study illustrated the gene silencing efficacy of a simple cyclodextrin-siRNA conjugate it is envisaged that future studies will explore the use of conjugates with a modified cyclodextrin which would be self-delivering. Detailed data such as stability, lysosomal escape etc. will then be reported for each conjugate, since this will be appropriate for conjugates which are intended to exploit, rather than merely demonstrate, the concept. The present paper was intended to demonstrate the viability and generality of this novel concept. (Eur J Pharm Sci. 2018 Mar 1;114:30-37.)

Genetically Encoded Cholesterol-Modified Polypeptides

No Comments

Biological systems use post-translational modifications (PTMs) to control the structure, location, and function of proteins after expression. Despite the ubiquity of PTMs in biology, their use to create genetically encoded recombinant biomaterials is limited. We have utilized a natural lipidation PTM (hedgehog-mediated cholesterol modification of proteins) to create a class of hybrid biomaterials called cholesterol-modified polypeptides (CHaMPs) that exhibit programmable self-assembly at the nanoscale. To demonstrate the biomedical utility of CHaMPs, we used this approach to append cholesterol to biologically active peptide exendin-4 that is an approved drug for the treatment of type II diabetes. The exendin-cholesterol conjugate self-assembled into micelles, and these micelles activate the glucagon-like peptide-1 receptor with a potency comparable to that of current gold standard treatments. (J Am Chem Soc. 2019 Jan 4. )