Category: Nucleic Acids
-
Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM
Activation of the p53 tumor suppressor can lead to cell cycle arrest. The key mechanism of p53-mediated arrest is transcriptional downregulation of many cell cycle genes. In recent years it has become evident that p53-dependent repression is controlled by the p53-p21-DREAM-E2F/CHR pathway (p53-DREAM pathway). DREAM is a transcriptional repressor that binds to E2F or CHR…
-
Mechanism of DNA Binding and Cleavage
The necessity for cellular regulation of DNA led to the development of metallonucleases to catalyze and repair DNA strand breaks. Due to cationic character, three-dimensional structural profiles, and propensity for performing hydrolysis, redox, or photoreactions of metal ions and complexes, have a natural ability for interacting with DNA. Since binding and cleavage of DNA is…
-
G-Quadruplexes in Nuclear Biomolecular Condensates
G-quadruplexes (G4s) have long been implicated in the regulation of chromatin packaging and gene expression. These processes require or are accelerated by the separation of related proteins into liquid condensates on DNA/RNA matrices. While cytoplasmic G4s are acknowledged scaffolds of potentially pathogenic condensates, the possible contribution of G4s to phase transitions in the nucleus has…
-
Gemdimethyl Peptide Nucleic Acids (α/β/γ-gdm-PNA): E/Z-Rotamers Influence the Selectivity in the Formation of Parallel/Antiparallel gdm-PNA:DNA/RNA Duplexes
Peptide nucleic acids (PNAs) consist of an aminoethylglycine (aeg) backbone to which the nucleobases are linked through a tertiary amide group and bind to complementary DNA/RNA in a sequence-specific manner. The flexible aeg backbone has been the target for several chemical modifications of the PNA to improve its properties such as specificity, solubility, etc. PNA monomers exhibit…