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Abstract: The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been
approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However,
achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major
challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome
biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They pro-
vide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic
properties. This review focuses on the various chemical approaches implicated in mitigating the
delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in
designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal
barrier, a bottleneck in the development of oligonucleotide therapeutics.
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1. Introduction

Oligonucleotide therapeutics are synthetically modified nucleic acids that can mod-
ulate gene expression via a range of processes, including RNA interference, target degra-
dation by RNase H-mediated cleavage, splicing modulation, gene editing, and gene ac-
tivation [1,2]. In contrast to conventional drugs, oligonucleotides have the potential to
target traditionally undruggable disease-causing genes and patient-specific sequences that
are conducive to rare diseases. However, to attain clinical success, they need to over-
come multiple biological barriers to be efficiently delivered into the targeted cells/tissues
and reach their target (Figure 1) [3,4]. Chemical modifications of oligonucleotides have
proven to be crucial to improve oligonucleotide drug properties. The diligent efforts on
oligonucleotide chemistry for more than half a century have resulted in increasing oligonu-
cleotide on-target activity and metabolic stability while decreasing off-target effects and
immunogenicity [5–8]. As of today, there are more than 15 FDA-approved oligonucleotide-
based drugs mainly of small interfering RNAs (siRNAs) and antisense oligonucleotide
(ASO) classes; latter including, in particular, splice switching oligonucleotides (SSOs),
and encompassing either phosphorothioate (PS) oligonucleotides or phosphorodiamidate
morpholino oligomers (PMOs), to target various disease-causing genes in the liver, CNS,
and muscles [9–11].

Local delivery of oligonucleotides to the eye, spinal cord, and brain has been success-
fully achieved via intravitreal (IVT) and intrathecal (IT) administration, respectively [12,13].
However, systemic administration of oligonucleotides has been less successful due to
poor tissue distribution and uptake (Figure 1). While both lipid nanoparticles and N-
acetylgalactosamine (GalNAc) conjugates are clinically validated and approved delivery
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strategies for liver targets, efficient delivery of oligonucleotides beyond the liver is a fun-
damental obstacle preventing their clinical utility [14–19]. Alternative approaches such as
lipid conjugation, exosome loading, enveloped virus, spherical nucleic acids (SNAs), DNA
cages, and smart materials show great promise to improve oligonucleotide delivery into
specific tissues [1,20–26].
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sue/cell, intracellular uptake occurs via endocytosis. Most oligonucleotides either get trapped in 
endosomes and further transferred to lysosomes where they encounter enzymatic degradation or 
are recycled back into extracellular matrix via exocytosis. Only 1–2% of administered oligonucleo-
tides escape the endosomes to reach the target in cytosol or nucleus. Created with BioRender.com, 
AO25FLAM37. 

After reaching the tissue of interest, oligonucleotides, whether non-conjugated, con-
jugated, or formulated, enter the cell through endocytosis [27]. As oligonucleotides are 
polyanionic macromolecules, escaping the endosomal lipid bilayers to reach their intra-
cellular targets represents a major obstacle, limiting the development of safe and efficient 
drugs. Recently, it has been reported using quantitative NanoSIMS microscopy that only 
1–2% of N-acetylgalactosamine (GalNAc)-conjugated ASOs escape endosomes to engage 
with the target in vivo [20,28,29]. However, the mechanistic understanding of how the 
oligonucleotides escape from endosomes is still not understood. Various hypotheses have 
been proposed in the literature: 1. The repetitive, spontaneous, and short-lived, small 
breaches that occur in the endosomal lipid bilayer can allow the escape of oligonucleotides 
into cytosol. 2. Oligonucleotides can escape through a temporary breach generated during 
the fusion events between endosomes, multivesicular bodies (MVBs), and lysosomes. 3. 
Oligonucleotides may escape via retro-transport from the Golgi [20,29,30]. Understanding 

Figure 1. Biological barriers preventing therapeutic activity of oligonucleotides. Systemically admin-
istered oligonucleotides encounter nuclease degradation, RES phagocyte uptake, protein interaction,
and renal excretion before reaching the specific tissue/cell of interest. On reaching the tissue/cell,
intracellular uptake occurs via endocytosis. Most oligonucleotides either get trapped in endosomes
and further transferred to lysosomes where they encounter enzymatic degradation or are recycled
back into extracellular matrix via exocytosis. Only 1–2% of administered oligonucleotides escape the
endosomes to reach the target in cytosol or nucleus. Created with BioRender.com, AO25FLAM37.

After reaching the tissue of interest, oligonucleotides, whether non-conjugated, con-
jugated, or formulated, enter the cell through endocytosis [27]. As oligonucleotides are
polyanionic macromolecules, escaping the endosomal lipid bilayers to reach their intra-
cellular targets represents a major obstacle, limiting the development of safe and efficient
drugs. Recently, it has been reported using quantitative NanoSIMS microscopy that only
1–2% of N-acetylgalactosamine (GalNAc)-conjugated ASOs escape endosomes to engage
with the target in vivo [20,28,29]. However, the mechanistic understanding of how the
oligonucleotides escape from endosomes is still not understood. Various hypotheses have
been proposed in the literature: 1. The repetitive, spontaneous, and short-lived, small
breaches that occur in the endosomal lipid bilayer can allow the escape of oligonucleotides
into cytosol. 2. Oligonucleotides can escape through a temporary breach generated dur-
ing the fusion events between endosomes, multivesicular bodies (MVBs), and lysosomes.
3. Oligonucleotides may escape via retro-transport from the Golgi [20,29,30]. Under-
standing the spontaneous mechanism of endosomal escape will be the key to improve
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oligonucleotide endosomal release and thus enhance oligonucleotide activity and the
therapeutic window.

As demonstrated from clinical successes of oligonucleotide therapeutics, <1% of endo-
somal escape is sufficient to achieve robust and long-lasting activity in the liver when using
GalNAc conjugation. A single subcutaneous administration of GalNAc-conjugated siRNAs
can induce a clinical benefit that lasts up to 6–12 months in humans [18,19]. However,
the low level of endosomal release is insufficient when targeting extra-hepatic tissues. In
addition to limited endosomal escape, most oligonucleotides are degraded by lysosomal
enzymes or recycled back to plasma membrane via exocytosis before they can escape
the endosomes, further limiting the amount of oligonucleotides available to reach the
target [31]. Therefore, addressing the endosomal escape problem is required to efficiently
treat widespread diseases and as Steven Dowdy mentioned, “it will not be easy, otherwise
it would have already been solved” [20].

The aim of this review is to provide a comprehensive summary of chemical advances
made in oligonucleotide delivery and in developing non-viral systems that can facilitate
the endosomal escape. It highlights the importance of linker chemistry in designing
oligonucleotide conjugates and discusses their potential role in escaping the endosomal
barrier.

2. Chemical Modifications to Improve Oligonucleotide Drug Properties

Chemical modifications are required to use oligonucleotides as therapeutics [1,32].
They are essential to improve oligonucleotide stability and bioavailability and enhance
target binding affinity. For decades, many chemical entities have been explored and
incorporated into oligonucleotides, mainly on the backbone and the ribose, but also on the
nucleobase [8,33]. Each modification confers oligonucleotide-specific properties and may
be incompatible with certain classes of oligonucleotide therapeutics as they can alter their
mode of action. Therefore, depending on the oligonucleotide class (e.g., ASO or siRNAs)
incorporation of well-designed chemical modifications is primordial to maintain activity
(Table 1). In this section, the most common chemical modifications used in approved
and clinical ASOs and siRNAs will be discussed as the scope of modifications has been
thoroughly described in other reviews [1,9].

2.1. Chemical Modifications in ASOs

Since the first proof of concept, many different chemistries and the ASO’s mode of
action have been thoroughly studied [34]. ASOs are short (about 20 mer long) and single-
stranded synthetic nucleic acids. They have been successfully used for modulating the
expression of transcripts, either by direct cleavage of the target RNA through the RNase H1
endonuclease, or by acting as steric blockers by interfering with the translation machinery
of the transcript (Figure 2) [35].

Table 1. Different chemical modifications used in oligonucleotide therapeutics.

Chemical
Modification Drug Name Oligonucleotide

Class Indication Advantages and Disadvantages of
Modification

Approved Oligonucleotide Therapeutics

PS (DNA) VITRAVENE®

(fomivirsen) ASO CMV retinitis (1998
withdrawn)

PS backbone modification:
- Increases nuclease resistance;
- Enhances serum protein binding;
- Improves cellular uptake;
- Does not interfere with RNase H

activity;
- May decrease target binding

affinity;
- Induces major toxicities due to

protein interactions.
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Table 1. Cont.

Chemical
Modification Drug Name Oligonucleotide

Class Indication Advantages and Disadvantages of
Modification

2′-OMe/2′-F, PS

GIVLAARI®

(givosiran) siRNA Acute hepatic
porphyria (2019)

2′-sugar modification:
- Enhances the oligonucleotide

stability;
- Increases nuclease resistance;
- Improves the binding affinity

towards target RNA;
- Reduces the immunogenicity;
- Not all sugar modifications fit all

classes of oligonucleotides;
- It does not necessarily improve the

delivery of oligonucleotides.

OXLUMO®

(lumasiran) siRNA Primary hyperoxluria
(2020)

LEQVIO®

(inclisiran) siRNA

Heterozygous familial
hypercholesterolemia
(HeFH) or clinical
atherosclerotic
cardiovascular disease
(ASCVD) (2020, EMA),
(2021, FDA)

AMVUTTRA®

(vuttrisiran) siRNA Hereditary ATTR
(hATTR) (2022)

2′-F/2′-OMe MACUGEN®

(pegaptanib) Aptamer Neovascular AMD
(2004, withdrawn)

2′-OMe ONPATTRO®

(patisiran) siRNA Hereditary ATTR
(hATTR) (2018)

5′-Me-C, PS,
2′-O-MOE,

KYNAMRO®

(mipomersen) ASO

Homozygous familial
hypercholesterolemia
(HoFH) (2013
withdrawn)

5′-Me-C nucleobase modification:
- Well tolerated;
- Reduces the immunostimulatory

profile;
- Improves oligonucleotide

stability;
- Bulkier modification on nucleobase

can negatively affect the
oligonucleotide activity.

SPINRAZA®

(nusinersen) SSO Spinal muscular
atrophy (SMA) (2016)

WAYLIVRA®

(volanesorsen) ASO
Familial
chlylomicronemia
syndrome (FCS) (2019)

TEGSEDI®

(inotersen) ASO Hereditary ATTR
(hATTR) (2018)

QALSODY®

(Tofersen) ASO Amyotrophic lateral
sclerosis (ALS) (2023)

PMO

EXONDYS 51®

(eteplirsen) SSO
Duchene muscular
dystrophy (DMD)
(2016)

PMO scaffold modification:
- Improves stability;
- Enhances efficacy and

specificity;
- Increases nuclease resistance;
- Increases water solubility;
- Improves modulating affinity for

target RNA;
- Reduces serum protein binding

resulting in rapid clearance;
- Limits the tissue distribution.

VYONDYS 53®

(golodirsen) SSO
Duchene muscular
dystrophy (DMD)
(2019)

VILTEPSO®

(viltolarsen) SSO
Duchene muscular
dystrophy (DMD)
(2020)

AMONDYS 45®

(casimersen) SSO
Duchene muscular
dystrophy (DMD)
(2021)

Other chemical modifications under clinical investigation

PN
WVE-N531 * SSO

Duchene muscular
dystrophy (DMD)
(Phase 1/2) PN backbone modification:

- Increases nuclease resistance.
WVE-003 * ASO Huntington’s Disease

(Phase 1/2)

tcDNA SQY51 SSO
Duchene muscular
dystrophy (DMD)
(Phase 1/2)

tcDNA sugar modification:
- Increases stability of the

tcDNA/RNA duplex;
- Increases nuclease resistance.

* May also include modifications other than PN backbone modification.
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Figure 2. Summary of trafficking and mode of action of ASOs and conjugated siRNAs. (1) Oligonu-
cleotides are first internalized into the endosomal pathway by gymnotic uptake or by receptor-
mediated uptake, (2) in early endosomes, dissociation with the targeting moiety or ligand is initiated,
and (3) maturation of the early endosome leads to late endosomes where oligonucleotides are found
to escape in the cytosol. Late endosomes can either mature to (4) lysosomes, where most of the
material is degraded by the low-pH and degradation enzymes, or (5) to Multivesicular bodies where
they are (6) exported to the external environment. In the cytoplasm, (A.I) siRNAs are loaded into
RISC, where (A.II) the passenger strand is degraded and the guide strand selected. After target
recognition by the guide strand (A.III), the mRNA transcript is cleaved and degraded. For ASOs, they
can either (B) degrade the target mRNA through the RNAse H1 enzyme or (C) block the translation
machinery of the transcript. In the nucleus, ASOs can interfere with (D) the splicing machinery
and generate a modified mature mRNA or (B) directly downregulate the target through RNAse H1.
Created with BioRender.com, VP25FLPEXQ.

A range of modifications have been introduced to enhance ASO stability, efficacy, and
delivery. The most common modifications consist of (i) substituting the phosphodiester
(PO) backbone with a phosphorothioate (PS); (ii) modifying the 2′ position of the ribose;
(iii) incorporating 5-methyl group on pyrimidine nucleobases; or (iv) introducing an artifi-
cial biopolymer scaffold, such as a PMO or peptide-nucleic acid (PNA) (Figure 3).
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cleotides.

ASOs have greatly benefited from the PS backbone modification as made by Eckstein
in 1966 that simply replaces one of the non-bridging oxygen atoms of the PO backbone with
sulphur [36]. It confers the ASO a better serum stability towards endogenous nucleases,
but also improves its pharmacokinetic (PK) properties [4,37]. PS-ASOs have a longer
circulation time in vivo that correlates with an enhanced binding to plasma proteins [38,39].
This “simple” modification leads to a productive cellular uptake that is not observed with
the canonical PO and thus ignited the clinical potential of ASOs [40]. The PS backbone
also generates a broader interactome between the ASO and membrane-bound proteins and,
depending of the protein-ASO pair, initiates different endocytotic pathways [41]. The latest
work suggests a dynamic covalent exchange between the PS and the thiols/disulfides from
proteins, resulting in a “thiol-mediated uptake” [42]. The PS modification led eventually
to the first generation of antisense drugs in 1998, with the FDA approval of Fomivirsen
to treat cytomegalovirus retinitis in immunodeficient patients (today withdrawn from
the market) [43]. Additional backbone chemistries are also explored (Figure 3), with for
instance, phosphoryl guanidine (PN) [44,45], a charge-neutral backbone analogue that
shows improved resistance towards nucleases, or mesyl phosphoramidate that shows
advantages in terms of binding affinity to the target RNA, nuclease resistance and enhanced
RNase H1 cleavage when used in the gapmer context [46–48].

While the PS modification improves ASO stability and bioavailability, it also reduces
the affinity for the target RNA. Therefore, incorporation of additional modifications is
likely required to enhance ASO activity. 2′-modifications (e.g., 2′-O-methyl (2′-OMe),
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2′-O-methoxy-ethyl (2′-MOE), and 2′-fluoro (2′-F) modifications) or constrained ribose
and bridged nucleic acid modifications (e.g., locked nucleic acid (LNA) and tricyclo-DNA
(tcDNA) modifications) enable superior binding affinity to RNA, ASO nuclease resistance,
and can have a significant impact on ASO distribution. Furthermore, introduction of the
5-methyl group on cytosine reduces the immunostimulatory profile of certain DNA oligonu-
cleotides and enhances nuclease stability (Figure 3) [49,50]. While the 5-methylcytosine is,
to this day, the only base modification found in the clinic, it is worth nothing that many
other chemistries are explored, such as 2-thio dT or 2,6-diaminopurine [51,52]. The combi-
nation of a PS backbone, 2′-O-alkyl modifications, and 5-methylcytidine led to Nusinersen
and Mipomersen, two approved ASOs for the treatment of spinal muscular atrophy (SMA)
and homozygous familial hypercholesterolemia, respectively [53,54].

Dramatic chemical changes in ASO scaffolds have also been developed (e.g., PMO
and PNA), increasing ASO stability and modulating affinity for the target RNA. These
non-charged backbone ASOs allow specific RNA targeting in an increasing number of
clinical therapeutic areas. Eteplirsen is the first example of an FDA-approved PMO ASO
for the treatment of Duchenne muscular dystrophy (DMD) [55]. Golodirsen, Viltolarsen,
and Casimersen have followed, targeting different mutations in the DMD gene [56–58].

2.2. Chemical Modifications in siRNAs

siRNAs are short double-stranded RNAs (20 to 25-mer RNA duplexes) naturally
present in eukaryotic cells [59]. Their primary role is to regulate gene expression via
the RNA interference (RNAi) machinery [60]. Extensive studies on their mode of action
(Figure 2) enable siRNA design optimization to utilize them as powerful lab tools and
drugs for degradation of specific disease-causing mRNA.

As with ASOs, to be effective as a drug, siRNAs also require chemical stabilization.
Chemical modifications that replace 2′-hydroxyl of the ribose and modify terminal nu-
cleotide linkages are needed to maximize their in vivo activity [32,61,62].

The chemical modification of siRNAs is more challenging due to their double-stranded
nature and the necessity to interact with the RNAi machinery. Bulky substituents on the
2′-position of the ribose are generally not well tolerated, and chemists combine smaller
modifications like 2′-F and 2′-Ome, which do not prevent RNA-induced silencing complex
(RISC) assembly and function [63]. Both modifications are approved in clinic and have
demonstrated efficiency to enhance siRNA stability, increase affinity to the targeted mRNA,
induce the duration of the effect, and reduce immunogenicity [9].

In addition to 2′-ribose modifications, further nuclease stability is primordial to ef-
ficiently deliver siRNAs to tissues, which can be achieved by incorporating PS linkages.
High PS modification content results in a decrease in RNAi activity [64,65]. Therefore, in
combination with 2′-OMe/2′-F modifications, clinically approved siRNAs only contain a
maximum of two PS modifications at the strands’ termini [16–18].

In contrast to PS-ASOs, chemical modifications are not sufficient to significantly
increase the cellular uptake of siRNAs. Therefore, formulation and conjugation strate-
gies are required for an efficient delivery into tissues/cells of interest. As of today, N-
acetylgalactosamine (GalNAc) conjugation is the clinically dominant approach for siRNA
delivery to hepatocytes. Given the wide therapeutic index and excellent safety profile of
these compounds, four chemically modified GalNAc-siRNAs have been FDA-approved
(Givosiran [17], Lumasiran [16], Inclisiran [18], and Vutrisiran [66]) to treat liver-associated
disorders.

3. Delivery Platforms to Enhance Oligonucleotide Therapeutics Intracellular Uptake

To reach their targets, oligonucleotides need to be delivered efficiently and in a pro-
ductive manner inside the tissues/cells of interest. While PS-ASOs can spontaneously and
productively enter cells without the need for a delivery system, they distribute mainly to
the liver and kidneys after systemic administration, limiting their use to treat widespread
diseases [67,68]. On the other hand, siRNAs are too large and charged to enter cells unas-
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sisted and require a delivery system to target any tissues after systemic injection. While
both lipid nanoparticles and GalNAc conjugates are clinically validated and approved
delivery strategies for liver targets, efficient delivery of oligonucleotides beyond the liver
and kidneys is a fundamental obstacle preventing their clinical utility [14–19].

Oligonucleotide delivery systems have been thoroughly described previously [1,69],
therefore, selected delivery approaches will be briefly mentioned in this review, including
both direct ligand conjugation strategies and nanocarrier technologies (Figure 4).
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Figure 4. Schematic representation of mentioned delivery strategies applied to oligonucleotides.
(A): (A1) Receptor agonist conjugates as exemplified with the GLP1R peptide agonist-ASO conjugate,
(A2) GalNAc conjugate as found in liver targeting therapeutics, and (A3) lipid conjugates exemplified
with the 2′-O-hexadecyl modified siRNA; (B): (B1) antibody–oligonucleotide conjugate, and (B2) diva-
lent siRNAs scaffold; (C): (C1) LNPs as for instance used in patirisan, (C2) dendrimer–oligonucleotide
complexes like PANAM, (C3) exosome delivery, (C4) DNA-nanoconstruct like the tetrahedron DNA
origami, functionalized with an ASO, and (C5) spherical nucleic acid, made with a gold nanoparticle
and packed ASOs. Figure created with BioRender.com, FU25OEFFUQ.

Conjugation of a Glucagon-Like Peptide 1 Receptor (GLP1R) agonist to ASO enables
efficient delivery to pancreatic beta cells, resulting in significant silencing of islet amyloid
polypeptide in mice. The GLP1R conjugate shows not only cell selectivity, but also improves
ASO productive uptake to intracellular compartments (Figure 4A1) [70,71].

Lipid conjugation has emerged as a delivery platform for oligonucleotides for systemic
administration (Figure 4A3) [72,73]. It has been demonstrated that the chemical structure
of the lipids significantly impacts oligonucleotide clearance, lipoprotein binding, tissue
distribution, and efficacy [21,23,25,26,74]. Highly lipophilic lipids such as cholesterol tend
to bind to low-density lipoprotein (LDL), driving oligonucleotide distribution to the liver.
On the other hand, less lipophilic lipids such as docosahexaenoic acid (DHA) tend to bind
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to high-density lipoprotein (HDL) and accumulate in the kidneys. Even though the delivery
to extra-hepatic tissues remains challenging, fatty acid conjugates including palmitic acid
and docosanoic acid enable functional oligonucleotide delivery to the lungs, CNS, eyes,
and muscles [22,24,75].

Antibody (Ab) conjugation is also applied to deliver both ASOs and siRNAs to extra-
hepatic tissues (Figure 4B1) [76]. Conjugating an anti-transferrin receptor Ab (anti-TfR Ab)
to PMO enables an increase in SMN2 mRNA level in the CNS when injected systematically
to a spinal muscular atrophy mouse model. These data demonstrate that the cargo can cross
the blood–brain barrier to deliver the drug efficiently [77]. In addition, multiple PMOs
linked to an anti-TfR Ab induce an increase in dystrophin expression in skeletal muscle in
mdx mice [78]. For siRNA delivery, the first example of antibody-mediated delivery was
published in 2005 by the Liberman group against the HIV-1 capsid gene gag [79]. Since then,
many leading pharmaceutical companies such as Avidity, Dyne, Tallac, Denali, and Genna
Bio have been developing Ab-conjugated siRNAs for the treatments of various muscle
disorders. Avidity’s AOC 1001, an anti-TfR conjugated siRNA, has entered clinical trials
to treat DM1 disease, demonstrating the value of such an approach [80]. This compound
shows >80% of mRNA silencing in muscles after a single-dose administration in mice [81].
Furthermore, siRNAs-Ab conjugates are being used in some instances as complexes with
cationic peptidic sequences, conjugated to the Ab itself. An Ab targeting a prostate specific
membrane antigen, a marker found in most prostate cancers, complexes siRNAs through
a protamine sequence (a 30–65 amino acids long sequence, with >50% of arginine). This
system shows a significative inhibition in the proliferation and the growth of cancerous
cells in a castration-resistant prostate cancer mouse model [82].

Based on organic scaffolds, an interesting approach consists of linking multiple siRNAs
or ASOs together, as a multimer vehicle to improve delivery (Figure 4B2) [83,84]. A
Di-siRNA scaffold targeting SARS-Cov2 mRNA has been reported, showing interesting
properties in terms of exposure and duration of the silencing effect in the lungs of mice,
compared to the monovalent analogue [85].

Nanocarriers represent an important class of oligonucleotide delivery systems. These
nanotechnologies can be of many forms, going from liposomes [86], peptides [87], den-
drimers [88], exosomes [89], spherical nucleic acids (SNAs) [90–92], or DNA nanostruc-
tures [93], to name a few (Figure 4C). One advantage of this strategy is the possibility to
control and fine-tune the biophysical properties of the carrier to enhance oligonucleotide
cellular uptake, intracellular trafficking, and endosomal escape. The control of the particle
size is particularly interesting when considering oligonucleotide pharmacokinetic prop-
erties and elimination through renal clearance [94]. In the case of SNAs, for example, the
density of oligonucleotides conjugated to the gold nanoparticle can be controlled to impact
the cellular uptake of the cargo [95]. Nanoparticles can either self-assemble as complexes,
as in the case of LNPs and dendrimers, or be precisely synthesized as with DNA-based
technologies. Exosomes are also interesting as vehicles for oligonucleotide delivery, they
are found endogenously and shown to be more resistant and less toxic compared to LNPs.
They were successfully engineered and used to deliver large materials like single-guide
RNAs and even plasmids [96,97].

4. Overcoming Endosomal Barrier to Maximize Oligonucleotide Therapeutic Activity

Unlike small molecule therapeutics, oligonucleotide therapeutics are large polyan-
ionic molecules, which do not readily diffuse across the cellular membrane. Both re-
ceptor and non-receptor targeted oligonucleotides are initially internalized by various
endocytic mechanisms, depending upon cells and brought into the early endosomes
(EEs) [27]. Oligonucleotides—whether non-conjugated, ligand-conjugated, or associated
with nanocarriers—are gradually trafficked from the EEs to late endosomes (LEs) to
downstream multivesicular bodies (MVBs) and finally to lysosome (LYs) for degradation
(Figure 2) [98–100]. In this event, oligonucleotide therapeutics experience an environmental
change in pH (7.4–4.5) as they travel along the endocytic pathway [31]. In addition, while
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oligonucleotides are stable in endosomal compartments, small amounts can be recycled
back to the extracellular space through exocytosis [101]. Therefore, it is crucial for the
oligonucleotides to escape from endosomes before lysosomal degradation and recycling
events to maximize their therapeutic effect.

As oligonucleotides are polyanionic macromolecules, escaping the endosomal lipid
bilayers to reach their intracellular targets represents a major obstacle, making the endoso-
mal escape to be a rate limiting factor for the oligonucleotide therapeutic effect [31]. It has
been reported that only 1–2% of GalNAc-PS ASOs and less than 0.3% of GalNAc-siRNA
conjugates escape endosomes to engage with the target in vivo [28,102]. Therefore, there is
an urgency to understand the mechanism of endosomal escape to enhance oligonucleotide
release into the cytosol.

Only little success in attempts to improve the escape of oligonucleotides from en-
dosomes has been reported. Although the use of endosomal escape domains (EEDs)
represents a promising approach to enhance endosomal escape, their mechanism of per-
meabilizing endosomes may induce toxicity, narrowing the oligonucleotide therapeutic
index [30,103–107]. Many of EEDs lead to endosomal bursting releasing a wide array of its
luminal content into the cytosol, resulting in activation of the innate immune system and
other toxic pathways [29]. Even though ~99% of oligonucleotide therapeutics remain en-
trapped in endosomes or lysosomes, recent evidence suggests that trapped oligonucleotides
serve as a depot, enabling slow oligonucleotide leakage over the course of time and thus
long duration of the effect [102]. Therefore, to solve the endosomal delivery problem, it is
crucial to acknowledge the balance between enhancing endosomal escape for better efficacy,
having a partial depot effect for long duration of response, and maintaining safety.

5. Strategies to Enhance Endosomal Escape

Microorganisms like viruses (enveloped or non-enveloped) and bacterial toxins are
naturally built with efficient strategies to escape endo-lysosomal vesicles for their own ben-
efit. Mostly, they escape endosomes via pore formation and/or membrane fusion [108–110].
However, it is unlikely to use viral carriers as oligonucleotide delivery systems as they
are associated with cytotoxicity and potent immune responses on repeated dosing [111].
Understanding their mechanisms has inspired researchers to explore non-viral delivery
systems to enhance endosomal escape efficiency. Even being a subject of intensive investi-
gation for more than four decades, the mechanism by which oligonucleotide therapeutics
escape the endosomes remain unknown, limiting the development of efficient delivery
systems. Several hypotheses on how drugs escape endosomes have been reported and
summarized in a review by D. Pei and M. Buyanova [112]. Briefly, endosomal escape can
be triggered by either one or multiple simultaneous mechanistic events such as membrane
fusion, pore formation, proton sponge effect, membrane destabilization, or vesicle bud-
ding and collapse, depending upon the chemical properties of different endosomal escape
domains (Figure 5) [113–122].

The endosomal pH is associated with the stage of endosomal maturation. It decreases
progressively from the cell surface (pH ~7.4) to pH 6.5 in early endosomes and then, pH 5.5
in late endosomes. This pH change in the endocytic pathway can facilitate the endosomal
escape of oligonucleotides into cytosol by using pH-sensitive scaffolds, which can interact
with the endosomal membrane and disrupt it at an acidic pH. Taking advantage of pH
differences between the extracellular matrix and endosomal compartments, a variety of
endosomolytic agents such as endosomal buffering polymers, endosomolytic peptides,
small molecules, ionizable lipids, and cationic liposomes have been developed and used in
gene delivery.
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Figure 5. Proposed mechanisms of endosomal escape. (A) Proton-sponge effect: buffering polymers
or small molecules induce increased inflow of protons, counterions, and water molecules into
endosomes, resulting in high osmotic pressure and hence endosomal rupture; (B) membrane fusion:
ionizable lipids containing fusogenic lipids fuse with endosomal bilayer and hence releases the
oligonucleotides into cytosol; (C) membrane destabilization: polymers containing pH-sensitive
scaffolds interact with anionic endosomal membrane and induce membrane destabilization; (D) pore
formation: some endosomolytic peptides form pores in endosomal membrane, which allows escaping
of oligonucleotides into cytosol. It can be of two types such as barrel-stave pore formation and toroidal
pore formation. (E) Vesicle budding and collapse: some endosomolytic peptides induce budding
and collapse of CPP-containing vesicles from endosomal membrane. Created with BioRender.com,
JF25FK1RLE.

5.1. Endosomal Buffering Polymers

As the pH of endolysosomal compartments decreases progressively from the cell
surface (pH ~7.4) to the LYs (pH 4.5), the cytosolic delivery of nucleic acids using pH-
dependent cationic polymers or polyplexes has been of great interest [121,123,124]. Poly(L-
lysine) (PLL) and polyethyleneimine (PEI) and other polymeric vectors (Figure 6) taken up
via endocytosis can form non-covalent polyplexes or nanoparticles with oligonucleotides
through electrostatic interactions [125–127]. These polyamine vectors undergo protonation
at low pH in endosomes, which prevents further endosomal acidification by absorbing more
protons and counter ions. It results in osmotic swelling, which eventually leads to rupturing
of the endosomal membrane, allowing the oligonucleotide system to escape into cytosol
(a process called the proton-sponge effect) (Figure 5A) [120,128]. The use of pH sensitive
cationic polymers as transfectants and effective nucleic acid delivery systems in vitro
has been widely explored. However, the requirement of a large excess of the polymers
for effective transfection often induces substantial toxicity during in vivo applications.
Chemical modifications of PLL and PEI have been investigated to enhance their nucleic
acid delivery properties [129–131], for example, PEGylated PLLs and PEIs to improve
tolerability, degradable disulfide crosslinked PEIs to reduce toxicity, and alkylated PEI to
increase potency. In addition, several other polymers are evaluated to address toxicity
and efficacy concerns, including poly(amidoamine) (PAMAM) dendrimers, poly(β-amino
esters) (PBAEs), poly[(2-dimethylamino)ethyl methacrylate] (pDMAEMA), and various
carbohydrate-based polymers (Figure 6) [132–136]. While substantial progress has been
made in this area, designing safe and efficient pH-dependent cationic polymers that can
enhance the endosomal escape of oligonucleotides is still needed.
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5.2. Cell-Penetrating Peptides (CPPs)/Endosomolytic Peptides (EPs)

If evolution led eukaryotic cells to carefully manage the exchange of information
between their external environment, the endosomal compartments, and their cytosol,
viruses surely co-evolved to overcome these barriers [137,138]. A first example comes from
HIV-1, which was found to easily cross the plasma membrane thanks to its trans-activating
regulatory protein (TAT) [139,140]. It was discovered that only a small peptidic portion of
TAT (Table 1), called the protein transduction domain (PTD) and rich in basic Arginine and
Lysine amino-acids, could be synthesized and fuse to different cargos for efficient delivery
inside cells [141,142]. Therefore, CPPs could be an interesting approach to overcome the
endosomal barrier and increase drug delivery [143–146]. While getting inspiration from
nature is elegant, the solution is not that simple.

In the case of cationic CPPs, their mode of action is still under debate. It was first
thought that the peptides, like their parent proteins, would translocate directly to the cytosol
through the bilayer cell membrane, in an energy-independent manner [147,148]. Further
experiments show this is not really the case and that the peptides, just like oligonucleotides,
are internalized through endocytosis. One hypothesis is that the positively charged pep-
tide interacts with the anionic proteins found on the cell surface, such as the heparan
sulfate proteoglycans, initiating the endocytic pathway in an energy-dependant manner
(e.g., macropinocytosis) [149]. Once inside the endosome, cationic CPPs can possibly aid
in endosomal escape via the proton-sponge effect or membrane destabilization [150], but
according to the latest work, they seem to be more efficient at only penetrating the cell
membrane [147]. While cationic CPPs are mainly used to deliver a neutrally charged back-
bone (i.e., PMO and PNA), a siRNA conjugated to TAT, penetratin, or LAH4-L1 peptides
shows effective gene silencing in vivo and in vitro, respectively (Table 1) [151,152]. The
LAH4-L1/siRNA complex enters the cell through a cholesterol-dependent process and
may escape from endosomes via multiple pathways [153].

Amphiphilic peptides, as illustrated by the HA2 protein from influenza viruses or
the synthetic GALA peptide designed by Szoka group (Table 2), have a different mode of
action for initiating endosomal release [154,155]. Their sequence is composed of glutamic
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acid amino-acids that, when the pH of the compartment drops along the endosomal
pathway, adopts a helical conformation [156]. This change of conformation disrupts the
endosomal membrane, leading to the leakage and release of the cargo. The capacity of
amphiphilic EPs to induce endosomal escape seems hampered when they are directly
and covalently conjugated to the cargo [147,157]. The Harashima group discovered that
liposomes modified with GALA peptides improve siRNA transport into cells and that
combining GALA peptides with PPD (PEG-peptide-DOPE) in lipid-based nanoparticles
improves endosomal escape, siRNA delivery, and gene silencing [158]. In addition, various
other amphiphilic EPs, such as INF7, TAT-HA2, bPrPp, and aMel, have been developed
to increase endosomal escape in gene delivery systems [143]. Co-injection of a GalNAc-
conjugated siRNA and a GalNAc-INF7 peptide shows a significant increase in mRNA gene
silencing compared to administration of GalNAc-siRNA alone, proving the efficacy of such
a strategy [102].

Table 2. Sequences of common CPPs used in oligonucleotide delivery.

Family Peptide Sequence Reference

Cationic
Tat-(43–60) LGISYGRKKRRQRRRPPQ [159]
Tat-(48–60) GRKKRRQRRRPPQ [159]

LAH-L1 (cationic amphipatic) KKALLAHALHLLALLALHLAHALKKA [150]

Amphipathic anionic

Penetratin RQIKIWFQNRRMKWKK [160]
E5 (derived from HA2) GLFEAIAEFIEGGWEGLIEGCA [161]

INF7 (derived from HA2) GLFEAIEGFIENGWEGMIDGWYGC (dimer) [162]
GALA WEAALAEALAEALAEHLAEALAEALEALAA [154]

Penetration Accelerating
Sequence-Hydrophobic

Cathepsin D domain GKPILFF [163]
EED6 GFWFG [164]
EED7 GWWG [164]

“Penetration Accelerating Sequence” (PAS are short hydrophobic peptides mainly
composed of tryptophane and phenylalanine (Table 1). It was first discovered that the
attachment of a hydrophobic tail (-GKPILFF-derived from the cathD protein) to an arginine-
rich sequence was accelerating and increasing the cytosolic translocation of fluorescent
cargos [163]. When accumulating inside the endosomal compartments, the hydrophobic
moieties insert in the lipid bilayer and locally destabilize the membrane, releasing their
content inside the cytosol [165]. Studies show that a combination of the TAT domain with
a hydrophobic tail of amino acid increases the cargo delivery in cytosol both in vitro and
in vivo [164,166].

5.3. Small Molecules

Compared to the important size and the polyanionic character of oligonucleotides,
most small molecules have the advantage of diffusing freely across the cellular membranes
and subcellular compartments. Several groups have performed a library screening to
seek compounds able to interact with the endosomal pathway and influence the escaping
of oligonucleotides [167,168]. This family of molecules has different denominations: en-
dosomolytic compounds, endosomal escape enhancers, and oligonucleotide enhancing
molecules (OECs). In this review, they will be named OECs.

One of the most well-known examples is the chloroquine (Figure 7) that, once in
acidic vesicles, becomes protonated and generates a “proton-sponge effect”, swelling the
compartment and allowing leakage of the endosome compartment in the cytosol [169].
Operating the same way, CMP05, a compound characterized by Bost et al., shows a higher
endosomal rupture effect than the chloroquine and at lower doses (Figure 7). CMP05
was successfully used to improve SSO delivery and could be a potential adjuvant for
oligonucleotides [168].
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OECs can also induce permeation at different stages of the endosomal pathway,
allowing the release of oligonucleotides in the cytosol [167]. This is for example the case
for UNC7938 (Figure 7), a molecule found by Juliano et al. that acts between the early
endosome and lysosomal stages. It is hypothesized that the improved endosomal release
happens in the LEs/MVBs, where oligonucleotides have a higher chance of escaping [170].

OECs interacting physically with the endosomal membrane and inducing membrane
permeability by forming transmembrane pores have been studied. The antifungal drug
amphotericin B is one example and was successfully used to deliver siRNAs and ASOs into
the cytosol (Figure 7) [171].

While OECs show promise to enhance oligonucleotide endosomal escape, they bear
important challenges. (i) They have their own pharmacological actions and their own
side-effects, resulting in potential toxicity. (ii) The non-specific swelling of vesicles induced
by OECs might release undesired products (degraded proteins and exogenous material),
leading to additional toxicity. (iii) The timing of dosage is important, should the OECs
be co-injected with the drug or delayed by an X amount of time? It becomes challenging
as the OECs and the oligonucleotides have distinct pharmacokinetic/pharmacodynamic
properties in vivo. (iv) Different tissues/cell lines react differently to OECs, and thus a
careful optimization is required to reach an efficient OEC–oligonucleotide cocktail [169].

5.4. Cationic Liposomes

As previously mentioned, LNPs offer great opportunities to efficiently deliver oligonu-
cleotides. This technology has already been used in three nucleic acid FDA-approved drugs:
Patisiran, an siRNA drug that treats hereditary disease transthyretin-mediated amyloidosis,
and two SARS-CoV2 mRNA vaccines, Tozinameran and Elasomeran [172–174].

The lipid composition of the particles can be carefully selected and designed to im-
prove parameters including drug encapsulation, particle size and stability, but also to
confer extra properties such as endosomal escape enhancement [175–177]. In that regard,
cationic lipids are particularly interesting as vesicle components. pH-sensitive cationic
liposomes get destabilized at acidic endosomal pH, leading to their escape from endosomes
through destabilization or their fusion with the endosomal membrane. Dioleylphosphatidy-
lamine (DOPE) is one the key components of pH-sensitive liposomes, in addition to weakly
acidic amphiphiles such as cholesteryl hemisuccinate (CHEMS), phosphatidylglycerol (PG),
phosphatidylserine (PS), and phosphatidylcholine (PC) (Figure 8) [144,178–180]. In an
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acidic environment, DOPE undergoes phase transition from a lamellar phase to an inverted
hexagonal phase, which leads to the destabilization of the endosomal membrane [181].
Alternatively, an acid-cleavable group can be introduced to increase the transfection ef-
ficiency of the liposomes. With this aim, for example, the primary amine of DOPE has
been modified with citraconic anhydride to form citraconyl-DOPE. The citraconyl group
cleaves at a low pH to reform DOPE to its initial form in the endosomes [182]. Based on
their pH-sensitive behaviour, various liposomes, such as GALA-modified liposomes and
PEGylated YSK05-MEND, have been used for effective delivery of siRNA to the target
cell [158,183].
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6. Importance of Linker Chemistry in Drug Delivery

As mentioned previously, chemical modifications are required to improve oligonu-
cleotide drug-like properties but are not sufficient to efficiently deliver oligonucleotides
to the targeted cells/tissues [184,185]. While a variety of deliver systems has been ex-
plored, direct conjugation of oligonucleotides to ligands—such as lipids [21,25,186], pep-
tides [70,187–189], aptamers [190], antibodies [191], and sugars (e.g., GalNAc) [192,193]—is
emerging as the clinically dominant delivery strategy. Therefore, combining chemical mod-
ifications and conjugation approaches gives opportunities to maximize oligonucleotide de-
livery to the tissues of interest. GalNAc conjugated to fully chemically modified siRNA has
revolutionized the development of oligonucleotide therapeutics to treat liver diseases [194].
Furthermore, several groups have pioneered the use of peptide–PMO (PPMO) conjugates
for the treatment of various diseases, most notably for dystrophin splice-switching in
regard to DMD and SMA [189,195].
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In conjugated oligonucleotides, ligands can be attached covalently via different linkers
at various positions, generating a wide range of well-defined conjugated compounds with
distinct properties. Ligand conjugation can generally occur at the 3′ and 5′ ends on the
hydroxyl terminal groups, or at any nucleotides on the 2′-hydoxyl groups and nucleobases
(Figure 9A). It has been preferred to link conjugates at the termini of oligonucleotides to
minimize base-pairing interference. In siRNA, the passenger strand is generally conjugated
to the ligand, because, although the duplex is loaded into RISC complex, only the guide
strand is functional for mRNA hybridisation and degradation. Therefore, ligand-conjugated
passenger siRNA are expected to have no or little influence on RNAi activity (Figure 9B).
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The employed linkers to conjugate the ligands to the oligonucleotides dictate the
stability of ligand–oligonucleotide conjugates in plasma and play a significant role in their
biophysical properties, pharmacokinetic behaviour, and therapeutic efficiency. A well-
designed linker should be stable in plasma to avoid premature conjugate cleavage and
enable efficient release of active drug at the targeted site of action. Both length and nature
of the linkers can affect the therapeutic property of oligonucleotides. Therefore, optimizing
the structure of the linker is essential to maximize the conjugated-oligonucleotide activity.
Schematically, linkers are divided into two categories: non-cleavable and cleavable linkers.

Non-cleavable linkers are generally more stable and the conjugates with non-cleavable
linkers remain intact for a prolonged time. The use of these linkers could avoid the
premature release of a drug in circulation and could be beneficial in conjugated compounds
where it plays a role in drug activity [196,197]. It could also be useful for drugs that are
required to bind two different targets at the same time in order to bring them in close
proximity to achieve the desired pharmacological effect [198]. Unlike cleavable linkers,
non-cleavable linkers do not have a particular weak bond in their structure that could be
cleaved by enzymes, photo-irradiation, or change in pH. Therefore, the linker should be
attached to an appropriate position to ensure no significant interference with the binding of
the drugs to their targets. In addition, the hydrophobicity and length of the linker should
be optimized to ensure optimal water solubility and distance between ligand and drug
molecule to maximize drug activity.

Cleavable linkers can be described as chemical entities with two functional heads
joined together through a cleavable bond, which can be cleaved in a controlled fashion
to release at least two different molecular species. In the early 1990s, the development of
various cleavable linkers triggered the rapid expansion of solid-phase organic synthesis,
resulting in the smooth release of the payload from its solid support [199]. Cleavable
linkers are broadly classified into enzymatic, physicochemical, or chemically labile linkers
depending on the conditions used for their cleavage [200]. This review mainly focuses on
the chemically cleavable linkers used in drug delivery. Chemically cleavable linkers such as
acid-cleavable and reducible linkers have been thoroughly explored and are undoubtedly a
part of a general synthetic chemist toolbox. As the harsh conditions required by organic
synthesis linkers are unsuitable for biochemical processes, chemists started to reassess
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potential functional groups and cleavage reactions that could satisfy various challenging
constraints. Linkers should be labile in mild conditions, resistant to labelling and purifica-
tion of conjugates, easy to synthesize and high yielding at low concentrations, and require
the use of bio-orthogonal reagents.

7. Cleavable and Non-Cleavable Linkers in Oligonucleotide Conjugates

Linkers of various length, polarity, stability, and flexibility are used for different types
of oligonucleotide conjugates and the choice of linker structure is mostly driven by the
desired mode of action. A non-cleavable linker is preferred over a cleavable linker when
the stability of the conjugate is more important than the fast release of the drug. However,
stable linkages may hinder the therapeutic activity of oligonucleotides. Once internalized,
bulky ligands can interfere with the loading of oligonucleotides in biological machinery,
such as RISC or RNase H, or can directly impact target binding.

Cleavable linkers, depending on their nature, offer a greater degree of control over
loaded oligonucleotides’ release mechanism. While it is unclear if ligand conjugation im-
pacts oligonucleotide endosomal escape, dissembling ligands from oligonucleotides could
be beneficial, where free oligonucleotides can be more therapeutically active. Therefore,
cleavable linkers have gained immense importance and become a subject of investigation
in the field of drug discovery [200,201].

Over the years, different types of ligation methods for tethering the oligonucleotides
have been explored (Figure 10) [202,203]. The most used non-cleavable (i.e., amide, triazole,
and maleimide linkages) and chemically cleavable (i.e., disulfide and pH-sensitive linkages)
linkers in oligonucleotide therapeutics are described in more details in this section.
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7.1. Non-Cleavable Linkages
7.1.1. Amide Linkages

Generally, the amide linkages are formed by a chemical reaction between an amino
group present on the linker attached to the oligonucleotide and an activated carboxylic
acid group bearing by the ligand. It is very common to use amide linkages in the design of
oligonucleotide conjugates as they are biocompatible and have minimal influence on the
physiochemical properties of oligonucleotide conjugates. However, using amide linkages
imposes certain limitations. (i) The nucleophilicity of amino groups is pH dependent,
which results in low reactivity towards electrophile at a lower pH; and (ii) the conjugation
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reaction in solution phase involves the use of carbodiimide-activated intermediates, which
can lead to side reactions and low coupling yields due to the instability of activated esters
in aqueous media. Therefore, a careful optimization of conjugation conditions is required
to efficiently synthesize conjugated oligonucleotides using amide linkage.

The GalNAc conjugate has been successfully linked to siRNAs via amide linkage
(Figure 11). These compounds demonstrate robust and prolonged silencing in hepatocytes
and have been FDA-approved to treat liver diseases [9]. In addition, several studies re-
port in vivo therapeutic activity in multiple extra-hepatic tissues when using lipid (e.g.,
cholesterol and fatty acids)-conjugated siRNAs containing amide linkages [22,23,25,204,205].
Recently, a robust ‘plug and play’ antibody conjugation of succinimidyl-functionalized
oligonucleotides containing stable amide linkages enables to develop highly sensitive bioas-
says for specific epitopes in laboratory and clinic [206].

Cells 2023, 11, x FOR PEER REVIEW 18 of 40 
 

 

7.1. Non-Cleavable Linkages 
7.1.1. Amide Linkages 

Generally, the amide linkages are formed by a chemical reaction between an amino 
group present on the linker attached to the oligonucleotide and an activated carboxylic 
acid group bearing by the ligand. It is very common to use amide linkages in the design 
of oligonucleotide conjugates as they are biocompatible and have minimal influence on 
the physiochemical properties of oligonucleotide conjugates. However, using amide 
linkages imposes certain limitations. (i) The nucleophilicity of amino groups is pH 
dependent, which results in low reactivity towards electrophile at a lower pH; and (ii) the 
conjugation reaction in solution phase involves the use of carbodiimide-activated 
intermediates, which can lead to side reactions and low coupling yields due to the 
instability of activated esters in aqueous media. Therefore, a careful optimization of 
conjugation conditions is required to efficiently synthesize conjugated oligonucleotides 
using amide linkage. 

The GalNAc conjugate has been successfully linked to siRNAs via amide linkage 
(Figure 11). These compounds demonstrate robust and prolonged silencing in hepatocytes 
and have been FDA-approved to treat liver diseases [9]. In addition, several studies report 
in vivo therapeutic activity in multiple extra-hepatic tissues when using lipid (e.g., 
cholesterol and fatty acids)-conjugated siRNAs containing amide linkages 
[22,23,25,204,205]. Recently, a robust ‘plug and play’ antibody conjugation of 
succinimidyl-functionalized oligonucleotides containing stable amide linkages enables to 
develop highly sensitive bioassays for specific epitopes in laboratory and clinic [206]. 

 
Figure 11. Oligonucleotide conjugates containing amide linkages. (A) GalNAc-siRNA conjugate; (B) 
cholesterol-siRNA conjugate; (C) fatty acid-siRNA conjugate; and (D) antibody-ssDNA conjugate. 

7.1.2. Triazole Linkages 
Click chemistry is an attractive approach for the synthesis of oligonucleotide 

conjugates due to its high stability, high specificity, efficiency, and fast reaction time. A 
click reaction between azide and alkyne can be easily carried out with or without a copper 
catalyst in solution phase [207,208]. Copper-based catalysts are not preferred as it is 
difficult to remove copper residue after the reaction, resulting in cytotoxicity. Therefore, 
copper-free click chemistry such as strain-promoted alkyne-azide coupling (SPAAC) 
using cyclooctyne-based scaffolds is a more suitable approach for oligonucleotide 
conjugation. Chemical entities to introduce alkyne/cyclooctyne groups during 
oligonucleotide synthesis are commercially available, facilitating ligand conjugation 
[209,210]. SPAAC using dibenzocyclooctyne (DBCO) as a strained alkyne has been 
applied in several antibody–oligonucleotide conjugates utilized for the preparation of 
targeted anticancer agents [211,212] (Figure 12), multiplex protein detection assays [213–
215], and epigenomic profiling [216]. Recently, Ang II peptide–ASO conjugates have been 
successfully synthesized via SPAAC using bicyclo [6.1.0] nonyne (BCN) as a strained 
alkyne for the targeted delivery of ASOs through an Angiotensin Type 1 Receptor [217]. 

Figure 11. Oligonucleotide conjugates containing amide linkages. (A) GalNAc-siRNA conjugate;
(B) cholesterol-siRNA conjugate; (C) fatty acid-siRNA conjugate; and (D) antibody-ssDNA conjugate.

7.1.2. Triazole Linkages

Click chemistry is an attractive approach for the synthesis of oligonucleotide conju-
gates due to its high stability, high specificity, efficiency, and fast reaction time. A click
reaction between azide and alkyne can be easily carried out with or without a copper cata-
lyst in solution phase [207,208]. Copper-based catalysts are not preferred as it is difficult to
remove copper residue after the reaction, resulting in cytotoxicity. Therefore, copper-free
click chemistry such as strain-promoted alkyne-azide coupling (SPAAC) using cyclooctyne-
based scaffolds is a more suitable approach for oligonucleotide conjugation. Chemical
entities to introduce alkyne/cyclooctyne groups during oligonucleotide synthesis are com-
mercially available, facilitating ligand conjugation [209,210]. SPAAC using dibenzocyclooc-
tyne (DBCO) as a strained alkyne has been applied in several antibody–oligonucleotide
conjugates utilized for the preparation of targeted anticancer agents [211,212] (Figure 12),
multiplex protein detection assays [213–215], and epigenomic profiling [216]. Recently, Ang
II peptide–ASO conjugates have been successfully synthesized via SPAAC using bicyclo
[6.1.0] nonyne (BCN) as a strained alkyne for the targeted delivery of ASOs through an
Angiotensin Type 1 Receptor [217].

7.1.3. Maleimide Linkages

Thiol-maleimide linkages are widely used to conjugate oligonucleotides when non-
cleavable linkers are required for oligonucleotide delivery. A maleimide moiety can be
easily introduced into the ligand or oligonucleotide using succinyl spacers [218]. The
maleimide motif acts as a Michael acceptor and rapidly reacts with the free thiol group to
form thiol-maleimide linkage. As this linkage can be prepared in an aqueous buffer with-
out a catalyst, thiol-maleimide linkage has become a commonly used linkage to conjugate
oligonucleotides with various ligands, such as antibodies [219], and cell penetrating pep-
tides [203,220,221]. However, thiol-maleimide linkages are susceptible to in vivo reduction,
resulting in premature release of oligonucleotides from the ligand [222,223]. The use of retro-
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Michael ring opening of thiol-maleimide linkage is an alternative approach to overcome the
potential reduction possibilities [203,224,225]. Anti-CD71 Fab antibody–siRNA conjugates
(ARCs) using thiol-maleimide linkage enable to achieve significant gene silencing in muscle
tissues [226]. Furthermore, siRNA is conjugated with ThiomabTM antibodies, containing
engineered site-specific cysteine, using SMCC linker that contains thiol-maleimide linkage.
It is reported to induce gene silencing in various cell lines (Figure 13) [227].
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antibodies with siRNA using non-cleavable SMCC linker.

7.2. Chemically Cleavable Linkages
7.2.1. Disulfide Linkages

The disulfide linkages are generated by oxidative coupling of two free thiol groups,
usually by pre-activation of one of the reacting thiols to avoid formation of homodimeric
byproducts. While the disulfide linkages are sufficiently stable for storage and handling,
they are instable under a reducing environment in endosomal compartments [228]. Hence,
disulfide linkages can be employed as a cleavable linker for selective ligand-oligonucleotide
decoupling into the cells, liberating free oligonucleotides, which might be more preferable
to prevent target interference caused by the ligands. Usually, thiol linkers are commercially
available for attachment at the 5′-end of oligonucleotides during solid-phase synthesis.
However, it can also be attached to commonly used amino linkers in solution phase, such
as use of succinimidyl 3-(2-pyridyldithio)propionate, a thiol-amine hetero-bifunctional
crosslinker [229]. In addition, versatile phosphoramidite linkers containing disulfide
linkage and terminal tosyl handle can be used to conjugate oligonucleotides [230].

Disulfide linkages are commonly utilized in peptide–oligonucleotide conjugates hav-
ing a cysteine amino acid as thiol handles to achieve efficient coupling [231,232]. Also,
conjugation of siRNAs with ThiomabTM antibodies, containing engineered site-specific
cysteine, have been successfully carried out using an SPDB cleavable disulfide linkage
(Figure 14A). These compounds support strong gene silencing, demonstrating that SPDB
linkers do not impact conjugate properties [227]. While disulfide linkages allow ligand
conjugation, attachment of disulfide entities to oligonucleotides without ligand could also
be a strategy to enhance oligonucleotide cellular uptake. Abe and co-workers have recently
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reported that disulfide units conjugated at the oligonucleotide terminus enable agile cy-
tosolic internalization of antisense DNA and siRNA, possibly through disulfide exchange
reactions with the thiol groups on the cellular surface (Figure 14). Gene silencing effects of
disulfide oligonucleotides were found to be comparable with those of lipofection-mediated
oligonucleotides in vitro, notably with no cytotoxicity [233]. In addition, disulfide modi-
fied ASOs shows efficient exon skipping in mdx myotubes through enhanced membrane
permeability and nucleus internalization [234].
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Although disulfide linkage is reported to be an effective approach to synthesize
oligonucleotide conjugates, its preparation offers several drawbacks, namely, (i) use of
expensive protected thiol and disulfide functionalities on both coupling partners; (ii) site-
selective conjugation in the presence of multiple reactive thiol groups; and (iii) necessity
of removing acid labile protecting groups [235–237]. Moreover, regardless of oxidative
environment, the presence of cysteine and glutathione in systemic circulation may cleave
disulfide linkages to a certain extent after a prolonged circulation time, resulting in a
potential decrease in oligonucleotide delivery.

7.2.2. pH-Sensitive Linkages

The pH-sensitive linkers are a type of chemically cleavable linkers, that are designed
to selectively cleave under acidic environment, such as in endolysosomal compartments
or tumour microenvironment [238]. At physiological pH 7.4, these linkers are relatively
stable and hydrolyse very slowly, while the rate of hydrolysis is faster under acidic environ-
ment. Therefore, taking advantage of the pH difference between plasma and endosomal
compartments/tumor site, they can selectively release the drug into the targeted site or in
endosomes to potentially increase their intracellular escape (Figure 15) [239].

The use of pH-sensitive linkers is well known in Antibody–Drug Conjugates
(ADCs) [201]. Pfizer developed the first FDA approved ADC, gemtuzumab ozogamicin
(Mylotarg), which employed a pH-sensitive N-acyl-hydrazone linker. It was voluntarily
withdrawn in 2010 mainly for causing liver toxicity due to the presence of an unstable
hydrazone linker, however, it still has dose-limiting hepatoxicity and was approved again
in 2017 after redesign [240–243]. The redesigned phenylketone-derived hydrazone linker
was hydrolysed with a half-life, t1/2 = 48 h, in human and mouse plasma, demonstrating the
importance of well engineering the linker chemistry to develop efficient drugs (Figure 16).
Later, Gilead sciences used another carbonate-based pH-sensitive linker to conjugate cy-
totoxin SN-38 with humanized anti-Trop2 monoclonal antibody (mAb) (Figure 16). The
resulting Sacituzumab govitecan (Trodelvy) gained Breakthrough Therapy designation
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from the U.S. FDA and approval in 2020 for adult patients with metastatic triple-negative
breast cancer (TNBC) [244]. However, the serum stability of pH-sensitive carbonate linker
was also found to be less than expected with t1/2 = 36 h and again left a question mark on
its mechanism of action [244,245]. Therefore, the structural category of pH-sensitive linkers
is still limited and their stability in plasma has been a major concern.
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In search of more stable pH-sensitive linkers, the Zhou group developed a novel silyl
ether-based pH-sensitive linker to synthesize an ADC carrying cytotoxic monomethyl
auristatin E (MMAE, Figure 16) with t1/2 > 7 days in human plasma [246]. This design
improves the stability of pH-sensitive linkers as well as possesses strong cell inhibitory
activity in HER2+ cell lines with IC50 = 0.028–0.170 nmol/L. In addition to the improved
stability, the Zhou group claimed effective release of the drug at the target site, appropriate
efficacy, and controlled therapeutic toxicity.
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Although ADCs can achieve site selectivity through antibody and systemic stability
through a linker, non-specific toxicity can still be observed due to non-selective conjugated
small molecules. This brings into light antibody–oligonucleotide conjugates (AOCs), which
combines the appropriate precision of ASOs and siRNAs with the targeted delivery of
antibodies, thus synergizing the advantages of both technologies. Dyne Therapeutics uses
a cleavable linker for their pipelined AOC conjugates to release oligonucleotides in the
endolysosomes [76].

As in ADCs, hydrazone linkage has been successfully used to conjugate cholesterol
and α-tocopherol lipids to siRNA targeting MDR1 mRNA, mitochondrial antireplicative
RNAs targeting control region of mouse mtDNA, and guide RNAs for Mito-CRISPR system
(Figure 17A) [247]. The lability of the hydrazone bond at different pHs was tested using
siRNA conjugates, showing stability of the linkage at neutral pH and high hydrolysis rate
at endosomal pH. In addition, antibody–oligonucleotide conjugates containing hydrazone
linkage are used for sensitive assays to determine protein concentrations, where hydrazone
bonds are reported to be stable enough at physiological pH (Figure 17B) [248]. An attempt
to employ hydrazone linkage to conjugate a glyoxylyl-modified DNA oligonucleotide
with N-terminal hydrazide peptides showed instability of glyoxylyl and hydrazide groups
during synthesis and purification, demonstrating the limitation of hydrazone linkage in
peptide–oligonucleotide conjugation [203,249].
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The use of pH-sensitive linkers in the oligonucleotide therapeutics field remains
limited and designing new linkers is required to effectively release oligonucleotides in
endosomes/targeted sites. Recent developments in acid-sensitive prodrugs focus on
increasing the difference in hydrolytic cleavage rate of linkers between physiological and
endosomal/target site pH values, with the only aim to enhance the selectivity of hydrolysis.
In light of this strategy, the Wagner group measured the hydrolysis rate in aqueous buffer
solution at pH 7.4 (to stimulate plasma conditions) and 5.5 (to stimulate endosomal pH) for
various functional groups in dummy compounds, such as spiro di-orthoester, dialkyl acetal,
ketal, β-thiopropionate, oxazilidine, imidazolidine, acetal, hydrazone, acylhydrazone, 1,3-
dioxolane, siloxane, oxime, carbamates, etc. Using a FRET-based experiment (Figure 18),
the different bonds were classified based on their selective cleavage at acidic pH compared
to neutral pH (t1/2 at pH 5.5 vs. t1/2 at 7.4) [250]. It has been claimed that hydrolysis of
pH-sensitive linkers can be considered highly selective if the ratio t1/2 (pH 7.4):t1/2 (pH 5.5)
is more than 15 [251]. The ratio t1/2 (pH 7.4):t1/2 (pH 5.5) could then be used as one of the
criteria to evaluate selectivity of pH-sensitive linkers. Among the evaluated pH-sensitive
linkages, the spiro-orthoester linker (SpiDo) was reported to exhibit 23-fold faster hydrolysis
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at pH 5.5 than at physiological pH and show more selective endosomal release in different
cell lines [251]. Building on the results from the SpiDo linker and linear acetal linker, cyclic
acetal systems have been developed with the idea of developing pH-sensitive amine-to-
thiol cross linkers. However, these linkers show high stability under acidic conditions (even
at pH < 1), limiting their use as pH-sensitive linkers [225,252]. Recently, a novel class of
cyclic methoxybenzaldehyde acetals demonstrates high stability in neutral pH/plasma and
cleavage at acidic pH [253]. When installed as a pH-sensitive linker connecting the MMAF
drug to the antibody trastuzumab, significant potency in vitro and in vivo was observed,
indicating that cyclic methoxybenzaldehyde acetals are excellent candidates to be used as
pH-sensitive linkers for drug release applications where endocytosis is expected.
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Conceivably, selectivity and reactivity of a linker can be influenced by the introduction
of specific functional groups, which can help the linker chemistry in either of two ways, i.e.,
by improving the stability of hydrolytic labile bond in physiological pH, or by improving
the lability of hydrolytic labile bond in acidic pH [254]. For example, based on high selectiv-
ity in hydrolysis of iminoboronates in physiological pH and low pH values, it is reported
that introducing a boronic group in the ortho-position of aryl hydrazones can increase their
hydrolytic stability in plasma by forming a dative N-B bond (Figure 19A) [255–258]. The re-
action of O-acetyl phenolboronic acid with arylhydrazide does not produce the anticipated
acylhydrazone but yields a six-membered benzodiazaborine ring (DAB). The latter shows
remarkable serum stability and hydrophilicity due to its zwitterionic nature [259]. Further
stabilization of the diazaboronate bond by an additional B-O bond was recently observed
through the generation of N,O-bidentate ligands (Figure 19A) [260]. So far, DABs are
mostly used for fast assembly of highly stable bioconjugates, but could offer opportunities



Cells 2023, 12, 2253 24 of 38

to stabilize pH-sensitive cleavable linkers in plasma without impacting its cleavage in
endosomes or could be used as a stable version of traditional N-hydrazone linkers [261].
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pH-sensitive hydrazone linkages have also been employed in polymeric complexes
and dendrimers in addition to the catechol–boronate linkages, which are also reversible
and responsive to pH and redox environment. The dual-responsive bioconjugates contain-
ing these two dynamic covalent linkages are used for cytosolic delivery of impermeable
peptides, with a controlled release of peptides under endosomal acidity or reactive oxygen
species (Figure 19B) [262,263].

Amide bonds are known to be physiologically stable and not suitable for drug release
in acidic environments. The hydrolytic lability of amide bonds under acidic conditions
can be improved by the presence of a carboxylate group in proximity to monoamides of
maleic acid derivatives (Figure 20A,B). This structure is stable at pH 7.4, but its hydrolysis
at pH 5.5 results in the overall charge switch from negatively charged carboxylate to
positively charged ammonium ion. The pH sensitivity is due to the presence of a double
bond that locks the proximate amide and carboxylate into conformation, which does not
occur when using an amide bond formed by ring opening of succinic anhydride [264]. It
has been investigated that substituents of the double bond can also affect the hydrolysis
rates at different pH, where disubstituted maleic acid derivatives are found to show optimal
selectivity in hydrolysis. Such derivatives have been used as an acid-cleavable linker in
doxorubicin prodrug and enable stability of the conjugate at neutral pH (maintaining an
equilibrium with its imide form) while selectively releasing the drug even at mildly acidic
pH (Figure 20B) [265]. Recently, replacement of the double bond with a cyclic structure
resulted in comparable pH sensitivity, mostly due to similar conformational restriction
(Figure 20C) [266].

The Berkman group reported three generations of tunable pH-sensitive phosphorami-
date scaffolds, claiming that proximal functional groups can promote the release of the
amine payload (Figure 21A) [267–269]. The presence of H-bond donors (e.g., pyridinium
and carboxylic acid) in the neighbouring position at the alkoxide side of phosphoramidate
increases the hydrolysis rate of the P-N bond due to intramolecular H bonding (Figure 21B).
It has been demonstrated that proximity of the ionizable group and pKa of both proximal
ionizable group and departing amine are the main factors that can be tuned to achieve
controlled release of amine payloads in acidic pH. However, the selectivity in cleavage at
pH 7.4/5.5 has not been reported.
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Figure 20. (A) No hydrolytic cleavage of amide bond present in succinic amide at pH 5.5. (B) Hydrol-
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formation of stable imide, while acidic conditions promote drug release. (C) Replacement of double
bond in maleic acid derivative promotes amine scaffold release under acidic conditions.
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Recently, a convenient solid-phase synthesis of oligonucleotide conjugates containing
biodegradable, pH-sensitive phosphoramidate linkages has been reported (Figure 22) [270].
The effective release of oligonucleotides from small ligands under acidic conditions close to
endosomes/lysosomes was observed while maintaining comparative stability at pH 6. The
developed versatile method can potentially be used to obtain a variety of oligonucleotides
(i.e., ASOs, siRNAs, miRNAs, aptamers) conjugated to different ligands, and thus could
give access to compounds with increased cellular delivery and endosomal release.

To summarize, while these examples clearly serve as a basis for the development
of selective and safe pH-sensitive cleavable linkers for oligonucleotide conjugates, the
development of pH-sensitive linkers is an open-ended area of research, which requires
more systemic evaluation and balance between stability and reactivity at different pHs.
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8. Summary and Perspective

The impressive progress in the field of oligonucleotide therapeutics provides an
opportunity to treat diseases with unmet clinical needs. Combinations of well-designed
chemically modified oligonucleotides with specific conjugation or formulation led to major
breakthroughs to treat multiple diseases. However, this therapeutic class is still in its early
days and is set for additional advances to achieve its widespread use.

Further development of chemical modifications is required to increase the oligonu-
cleotide therapeutic window. There is no doubt that PS modifications have been proven
to be very effective, providing stability and improving ASO cellular uptake. However,
the PS backbone may decrease target binding affinity and the tight PS ASO–protein in-
teractions can lead to major toxicities. Therefore, exploring novel chemical backbones, to
maintain a balance between charge and protein binding, may open the way for improving
oligonucleotide drug properties. Neutral backbones such as, methylphosphonate, phos-
phoryl guanidine-containing (PN) backbones, amide, and triazole linkages may reduce
toxicity and increase potency while maintaining oligonucleotide stability [48,271–275].
Furthermore, several ribose chemical modifications, such as 2′-O-methyl (2′-OMe), 2′-O-
methoxy-ethyl (2′-MOE), 2′-fluoro (2′-F), locked nucleic acid (LNA), and constrained ethyl
(cEt), have been employed in oligonucleotides to increase oligonucleotide stability and
compensate the reduced binding affinity due to PS backbone modifications. Nevertheless,
additional chemical exploration may be needed to improve further oligonucleotide activity.
For example, the use of ethylene bridged nucleic acid (ENA) modification results in an
improvement of binding affinity [276–278]. Interestingly, the use of an artificial chemical
scaffold such as PMO leads to several FDA-approved ASOs to treat DMD (e.g., Viltolarsen
and Casimersen). In siRNA drugs, additional chemical modifications have been explored
such as glycol nucleic acid (GNA) to mitigate off-target effect, and 5′-(E)-vinyl-phosphonate
(VP) for better strand selection into RISC [279,280]. These few examples demonstrate that
expanding repertoire of chemical modifications with novel chemistries will advance the
oligonucleotide therapeutics field.

Finding the right chemical modifications that retain oligonucleotide activity and re-
duce oligonucleotide toxicity is challenging. Not only chemical modification properties
(e.g., lipophilicity, charge) but also their interaction with proteins (e.g., RNase H, RISC)
and targets impact oligonucleotide performance, limiting the chemical space. In addition,
incorporation of one type of chemical modification might not be enough to maximize
oligonucleotide drug properties. A combination of multiple well-selected and position-
dependent chemical modifications may be required to improve the oligonucleotide ther-
apeutic window. However, finding the best combination needs extensive comparative
studies. Therefore, an advanced chemical modification platform is needed to improve and
accelerate the success rate of oligonucleotides in clinics. It is important to mention that
chemical modifications that enhance ASO activity do not necessarily benefit siRNA drugs
(and vice versa), adding complexity in developing oligonucleotide drugs.
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Despite many advantages, chemical modifications are inadequate to improve the
site-specific delivery of oligonucleotides. Various formulation and conjugation strategies
are required to efficiently deliver oligonucleotides to tissues/cells of interest. The use of
LNPs has revolutionized the siRNA therapeutic field as utilized in the first FDA-approved
siRNA drug (Patisiran). Moreover, the success of GalNAc conjugates to efficiently deliver
oligonucleotides to the liver demonstrates that the functional tissue delivery of therapeutic
oligonucleotides is a foundation for any clinical exploration. As of today, the GalNAc
platfom is used in four FDA-approved siRNA to treat multiple liver diseases (Givosiran,
Lumasiran, Inclisiran, Vutrisiran). While both lipid nanoparticles and GalNAc conjugates
are clinically validated and approved delivery strategies for liver targets, efficient delivery
of oligonucleotides beyond the liver and kidneys is a fundamental obstacle preventing
their clinical utility. Therefore, further development of well-designed delivery ligands (e.g.,
peptides, antibodies, and lipids) or nanocarriers will likely enable effective oligonucleotide
delivery in extra-hepatic tissues. The continued progress and development in this area will
no doubt lead to many more breakthroughs in the future.

The delivery problem is not limited to reach the tissues/cells of interest but once
internalized, oligonucleotides get entrapped in the endosomal compartments. To reach
the target in cytosol or nucleus, the oligonucleotide should escape from endosomes before
degrading in lysosomes or recycling back via exocytosis. While chemical modifications
and conjugation improve efficiency and specificity of oligonucleotide delivery, they do
not necessarily influence the rate of endosomal escape. The enhanced release of PS-ASOs,
lipid-conjugated PS-ASOs, or GalNAc-conjugated PS-ASOs into cytosol could be due to
their higher concentration in endosomal compartments (and not an improvement of endo-
somal release per se), resulting from their increased intracellular uptake [28,281]. Increasing
oligonucleotide hydrophobicity and modulating oligonucleotide charge could be some
possible ways to enhance the endosomal escape, either due to increased uptake or higher
interaction with endosomal lipid bilayer. A variety of endosomolytic agents, such as, endo-
somal buffering polymers, endosomolytic peptides, small molecules, ionizable lipids, and
cationic liposomes, have been used to improve the endosomal release of oligonucleotides.
Nevertheless, some of them are non-biodegradable and non-biocompatible, which limits
their future applications in oligonucleotides delivery. In addition, it is challenging to find
an optimum endosomal escape agent that induces the endosomal membrane disruption
without completely rupturing the endosomes and with minimum toxic effects. Designing
an endosomal escape domain that is inactive in plasma but selectively turns ‘switched on’
in mildly acidic endosomal compartments could be a useful idea in finding a potential
solution to drive localized endosomal membrane disruption [282,283].

The use of reversible covalent bonds between ligand–oligonucleotide conjugates can be
a promising methodology to overcome the endosomal escape barrier. Hydrolytic cleavage
of pH-sensitive linkers in endosomal compartments could be one of the factors to trigger
the escape of oligonucleotides from endosomes by changing their electrostatic interaction
with endosomal membrane. A hydrazone linker has been commonly used as pH-sensitive
linker in oligonucleotide conjugates and this area is set for supplementary advances to be
more advantageous in oligonucleotide delivery. For optimum utility of pH-sensitive linkers
to overcome the delivery problem of oligonucleotide conjugates, certain parameters should
be followed: 1. covalently linked linkers should be inert in plasma to avoid the premature
release of oligonucleotides and reduce off-target effects; 2. linkers should be selectively
labile inside the endosomes to expose its endosomal escape domain; 3. the escape should
not be through complete endosomal rupture but localized endosomal membrane disruption;
4. the linker should enhance the endosomal escape while maintaining the depot effect and
low levels of toxicity; and 5. linkers should be easily synthesized and cost-effective, and
the by-products should not be toxic at cellular and systemic level.

A combination of various chemical manipulations is required to overcome the delivery
problem of oligonucleotide therapeutics. Future expansion of the chemical space will
establish a path toward advancing the oligonucleotide therapeutic field.
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