Tag: Antimicrobial peptide-fatty acid conjugate

Antimicrobial peptide-fatty acid conjugate

The rise of resistant bacteria has prompted the search for new antimicrobial agents. Antimicrobial membrane lytic peptides have potential as future microbial agents due to their novel mode of action. Recently conjugation of a fatty acid to antimicrobial peptides has been explored as a method to modulate the activity and selectivity of the peptide. Our work further explores these phenomena by testing two peptides, YGAAKKAAKAAKKAAKAA (AKK) and LKKLLKLLKLLKL (LKK), conjugated to fatty acids of varying length for their activity, structure, solution assembly properties and the ability to bind model membranes. We found that increasing the length of fatty acids conjugated to peptide AKK, up to a 16 carbons in length, increases the antimicrobial activity. Peptide AKK appears to lose activity when the minimal active concentration is higher than the critical miscelle concentration (CMC) of the molecule. Thus, if the CMC of the peptide conjugate is too low the activity is lost. Peptide LKK has no activity when conjugated to lauric acid and appears to aggregate at very low concentrations. Conjugation of AKK with a fatty acid increases its affinity to model supported lipid membranes. It appears that the increased hydrophobic interaction imparted by the fatty acid increases the affinity of the peptide to the surface thus increasing its activity. At concentrations above the CMC, solution self-assembly inhibits binding of the peptide to cell membranes.