Phage-Displayed Peptides for Targeting Tyrosine Kinase Membrane Receptors in Cancer Therapy

Receptor tyrosine kinases (RTKs) regulate critical physiological processes, such as cell growth, survival, motility, and metabolism. Abnormal activation of RTKs and relative downstream signaling is implicated in cancer pathogenesis. Phage display allows the rapid selection of peptide ligands of membrane receptors. These peptides can target in vitro and in vivo tumor cells and represent a novel therapeutic approach for cancer therapy. Further, they are more convenient compared to antibodies, being less expensive and non-immunogenic. In this review, we describe the state-of-the-art of phage display for development of peptide ligands of tyrosine kinase membrane receptors and discuss their potential applications for tumor-targeted therapy.

http://davidbjelland.com/blog/wp-admin/ The Evolution of Phage Display

Phage display represents a useful technique for studying protein–protein interactions that regulate the biological processes. Bacteriophages, which are viruses infecting bacteria, can express recombinant peptides on their surface coat following the cloning of random short DNA sequences within their genome. The phage display technique was first described in 1985 by George P. Smith, who demonstrated the expression of a foreign insert on a filamentous phage surface following its cloning in frame with the minor coat protein pIII. In the same year, George Pieczenik patented the production of random peptide libraries for phage display (US Patent, 5,866,363). In 1988, the selection of phage ligands of target proteins was improved by using a process called “biopanning”, which significantly reduced antibody requirements compared to the original procedure published in 1985. In the 1990s, combinatorial phage libraries containing 40 million 6-mer peptides or 20 million 15-mer peptides were built. As predicted by Smith, the use of these libraries allowed an effective investigation of the specific affinity binding to antibody epitopes, receptors, or other proteins using simple recombinant DNA methods. What Smith did not imagine was the wide number of applications of his invention in various biomedical fields. The phage display technology was further developed and improved by the following research teams: G. Winter and J. McCafferty of the Medical Research Council, Laboratory of Molecular Biology; R. Lerner and C. Barbas of the Scripps Research Institute; F. Breitling and S. Dübel of the German Cancer Research Center. All these researchers pursued the creation of phage-displayed combinatorial antibodies libraries, which were further improved by several other laboratories in the following years. As recognition of the phage display contribution to scientific advances in chemistry and pharmaceutics, George P. Smith and Sir Gregory P. Winter received the 2018 Nobel Prize in Chemistry “for phage visualization of peptides and antibodies”. More recently, the phage display has been useful for the mapping of antibody binding epitope and the screening of combinatorial peptide libraries in drugs discovery. A timeline of phage display development is shown below. (Viruses . 2021 Apr 9;13(4):649.)

Tumor penetrating peptides for improved drug delivery

No Comments

In vivo screening of phage libraries in tumor-bearing mice has been used to identify peptides that direct phage homing to a tumor. The power of in vivo phage screening is illustrated by the recent discovery of peptides with unique tumor-penetrating properties. These peptides activate an endocytic transport pathway related to but distinct from macropinocytosis. They do so through a complex process that involves binding to a primary, tumor-specific receptor, followed by a proteolytic cleavage, and binding to a second receptor. The second receptor, neuropilin-1 (or neuropilin-2) activates the transport pathway. This trans-tissue pathway, dubbed the C-end Rule (CendR) pathway, mediates the extravasation transport through extravascular tumor tissue of payloads ranging from small molecule drugs to nanoparticles. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. Targeted delivery with tumor-penetrating peptides has been shown to specifically increase the accumulation of drugs, antibodies and nanotherapeutics in experimental tumors in vivo, and in human tumors ex vivo. Remarkably the payload does not have to be coupled to the peptide; the peptide activates a bulk transport system that sweeps along a drug present in the blood. Treatment studies in mice have shown improved anti-tumor efficacy and less damage to normal tissues with drugs ranging from traditional chemotherapeutics to antibodies, and to nanoparticle drugs.

The iRGD peptide homes to tumors and accumulates in them through a 3-step process (Fig. 1): First, the integrin-binding RGD sequence motif binds to αvβ3 and αvβ5 integrins, which are specifically expressed in tumor endothelial cells. Other cells in tumors also express these integrins, which is likely to be important for the spreading of the peptide within tumor tissue, but the vascular endothelium is the gateway to the tumor for the peptide. Second, a protease cleavage event activates the CendR motif (R/KXXR/K). This protease(s) has not been identified, but is likely a furin or furin-like enzyme because the CendR motif is a preferred recognition motif for these proteases. In principle, any protease that cuts after a basic residue can activate iRGD. We have used trypsin and urokinase in vitro for this purpose. The protease cleavage requires the integrin binding; a peptide that has the CendR motif but does not bind to integrins (CRG cheap mexican pharmacy neurontin EKGPDC) is not activated. The requirement for integrin binding limits the activation of iRGD to tumors. Third, the CendR motif binds to neuropilin-1 (NRP-1) or neuropilin-2 (NRP-2), and the interaction activates an endocytotic/exocytotic transport pathway named the CendR pathway. This pathway is responsible for the enhanced transport of drugs into tumors triggered by iRGD.

Using an in vivo screening procedure designed to probe tumor lymphatic vessels, we identified a peptide that specifically accumulated in tumor lymphatics and not in normal lymphatics. We now know that this peptide, LyP-1, primarily accumulates in a myeloid cell/macrophage in tumors, when intravenously injected into tumor-bearing mice. Some of these cells incorporate into tumor lymphatics, causing LyP-1 accumulation in the endothelium of these vessels. Endothelial cells of tumor blood vessels and tumor cells also bind LyP-1, but much less of the peptide accumulates in these cells than in tumor macrophages. The macrophages are particularly abundant in hypoxic areas of tumors, which are low on blood vessels but contain abundant, albeit dysfunctional lymphatic vasculature. Remarkably, the phage carrying the LyP-1 peptide reaches these areas within minutes of systemic injection. The ability of this peptide to reach poorly vascularized parts of tumors remained a mystery for several years, until we discovered another peptide with similar tumor-penetrating properties, and set out to uncover the underlying mechanism. (Adv Drug Deliv Rev. 2017 Feb; 110-111: 3–12.)

Synthesis and Pharmacological Effects of Diosgenin–Betulinic Acid Conjugates

The target diosgenin–betulinic acid conjugates are reported to investigate their ability to enhance and modify the pharmacological effects of their components. The detailed synthetic procedure that includes copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction), and palladium-catalyzed debenzylation by hydrogenolysis is described together with the results of cytotoxicity screening tests. Palladium-catalyzed debenzylation reaction of benzyl ester intermediates was the key step in this synthetic procedure due to the simultaneous presence of a 1,4-disubstituted 1,2,3-triazole ring in the molecule that was a competing coordination site for the palladium catalyst. High pressure (130 kPa) palladium-catalyzed procedure represented a successful synthetic step yielding the required products. The conjugate  http://travelengine.eu/denmark-sorvagur-vagar-faroe-isl-from-e-161/ 7 showed selective cytotoxicity in human T-lymphoblastic leukemia (CEM) cancer cells (IC50 = 6.5 ± 1.1 µM), in contrast to the conjugate  8 showing no cytotoxicity, and diosgenin (1), an adaptogen, for which a potential to be active on central nervous system was calculated in silico. In addition, 5 showed medium multifarious cytotoxicity in human T-lymphoblastic leukemia (CEM), human cervical cancer (HeLa), and human colon cancer (HCT 116). Betulinic acid (2) and the intermediates 3 and 4 showed no cytotoxicity in the tested cancer cell lines. The experimental data obtained are supplemented by and compared with the in silico calculated physico-chemical and absorption, distribution, metabolism, and excretion (ADME) parameters of these compounds.

Diosgenin, (3β,25R)-spirost-5-en-3-ol, is a steroid sapogenin part of the saponin dioscin found in the tubers of Dioscorea zingiberensis C. H. Wright or Trigonella foenum-graecum L. and in numbers of legumes. Diosgenin is a widely used precursor in the synthesis of sexual hormones, peroral contraceptives and other steroids in the pharmaceutical industry. It is an adaptogen, displaying non-steroidogenic activity along with other beneficial effects. Diosgenin is unable to bind metal ions, and therefore, the change made from more traditional cholesterol/cholesterylamine system to diosgenin could influence the overall conformation of the bivalent structures, modifying the metal ions chelating properties. Saponins are always species formed from an aglycone and several monosaccharide units, the presence of which increases the solubility of saponins in natural aqueous media. Diosgenin is not metabolized in the human body, and it is considered to represent a safe natural drug. It has also been investigated for treating hyperglycemia, hypercholesterolemia, hypertriacylglycerolemia, and Alzheimer’s disease.
Betulinic acid, 3β-hydroxylup-20(29)-en-28-oic acid, is a pharmacologically perspective triterpenoid plant product with a broad spectrum of effects, e.g., antitumor, anti-HIV, cytostatic, and anti-inflammatory. It can be obtained from the bark of Betula pendula Roth, widely distributed in Europe, and from a number of subtropical and tropical plants. (Molecules. 2020 Aug; 25(15): 3546.)

Mitocanic Di- and Triterpenoid Rhodamine B Conjugates

The combination of the “correct” triterpenoid, the “correct” spacer and rhodamine B (RhoB) seems to be decisive for the ability of the conjugate to accumulate in mitochondria. So far, several triterpenoid rhodamine B conjugates have been prepared and screened for their cytotoxic activity. To obtain cytotoxic compounds with EC50 values in a low nano-molar range combined with good tumor/non-tumor selectivity, the Rho B unit has to be attached via an amine spacer to the terpenoid skeleton. To avoid spirolactamization, secondary amines have to be used. First results indicate that a homopiperazinyl spacer is superior to a piperazinyl spacer. Hybrids derived from maslinic acid or tormentic acid are superior to those from oleanolic, ursolic, glycyrrhetinic or euscaphic acid. Thus, a tormentic acid-derived RhoB conjugate 32, holding a homopiperazinyl spacer can be regarded, at present, as the most promising candidate for further biological studies.

An external file that holds a picture, illustration, etc.
Object name is molecules-25-05443-g001.jpg


Mitochondrial membranes of malignant cells hold an increased membrane potential compared to non–malignant cells. This effect fosters the accumulation of cationic molecules, hence inducing high selectivity for mitocans holding a (more or less) lipophilic cation such as a rhodamine scaffold. The same effect applies for triphenylphosphonium cations and to a small extent for quaternary ammonium ions, zwitterionic N-oxides and triterpenes substituted with BODIPYs or a safirinium moiety [67].
To date, hybrid molecules have been prepared from oleanolic acid (OA, Figure 2), ursolic acid (UA), glycyrrhetinic acid (GA), betulinic acid (BA), maslinic acid (MA), augustic acid (AU), 11-keto-β-boswellic acid (KBA), asiatic acid (AA), tormentic acid (TA) and euscaphic acid (EA).
OA-derived RhoB conjugates appear to be superior to analog UA-derived compounds in the majority of cases with respect to their cytotoxicity. Although AKBA-derived derivatives have good cytotoxicity properties, they were found to be less cytotoxic compared to other triterpene carboxylic acid derivatives, but they often showed better tumor cell/non-tumor cell selectivity. So far, the best cytotoxicity properties have been found for MA-, EA- and TA-derived derivatives. These allowed the transition to compounds of nano-molar activity, while many other triterpene carboxylic acid derivatives were cytotoxic only on a micro-molar concentration range. MA- derived derivatives seem to be approximately equivalent to EA-derived compounds. They are currently only surpassed in many tumor cell lines only by the analogous derivatives from TA. From results available so far, it can be concluded that compounds holding a homopiperazinyl spacer are superior to those with a piperazinyl spacer. This underlines the importance of the spacer for obtaining good cytotoxicity properties. (Molecules. 2020 Nov; 25(22): 5443.)

Coenzyme Q10 Analogues: Benefits and Challenges for Therapeutics

Coenzyme Q10 (CoQ10 or ubiquinone) is a mobile proton and electron carrier of the mitochondrial respiratory chain with antioxidant properties widely used as an antiaging health supplement and to relieve the symptoms of many pathological conditions associated with mitochondrial dysfunction. Even though the hegemony of CoQ10 in the context of antioxidant-based treatments is undeniable, the future primacy of this quinone is hindered by the promising features of its numerous analogues. Despite the unimpeachable performance of CoQ10 therapies, problems associated with their administration and intraorganismal delivery has led clinicians and scientists to search for alternative derivative molecules. Over the past few years, a wide variety of CoQ10 analogues with improved properties have been developed. These analogues conserve the antioxidant features of CoQ10 but present upgraded characteristics such as water solubility or enhanced mitochondrial accumulation. Moreover, recent studies have proven that some of these analogues might even outperform CoQ10 in the treatment of certain specific diseases. The aim of this review is to provide detailed information about these Coenzyme Q10 analogues, as well as their functionality and medical applications.

Overall, the beneficial effects of CoQ10 on human health and disease treatment are well known. However, there is growing interest among the scientific community for CoQ10 analogues and their presumably optimized performance in antioxidant therapies. In this review we have outlined the chemical improvements that successfully enhance CoQ10 bioavailability: shortening of its isoprenoid chain (idebenone and short chain CoQ analogues); addition of specific radicals to promote its mitochondrial accumulation (mitoquinone); modification of natural analogs to boost their antioxidant effect (plastoquinone); modification of the quinone ring (C6 modifications); and introduction of changes on its isoprenoid chain (decylubiquinone) to diversify its biology, its hybridization with other antioxidants and to enhance its potency (EPI-743). Taken together, these synthetic CoQ10 analogues open the door to new and improved therapies for conditions ranging from mitochondrial diseases to cancer. (Antioxidants (Basel). 2021 Feb; 10(2): 236.)

Bioactive Compounds for Skin Health

Human skin is continually changing. The condition of the skin largely depends on the individual’s overall state of health. A balanced diet plays an important role in the proper functioning of the human body, including the skin. The present study draws attention to bioactive substances, i.e., vitamins, minerals, fatty acids, polyphenols, and carotenoids, with a particular focus on their effects on the condition of the skin. The aim of the study was to review the literature on the effects of bioactive substances on skin parameters such as elasticity, firmness, wrinkles, senile dryness, hydration and color, and to define their role in the process of skin ageing.

The skin is the largest organ of the human body. It is composed of the epidermis, which consists of epithelial tissue, and the dermis, which consists of connective tissue. Under the dermis, there is a layer of subcutaneous tissue called the hypodermis (Figure 1). The epidermis comprises a horny layer (stratum corneum), a clear layer (stratum lucidum), a granular layer (stratum granulosum), a spinous layer (stratum spinosum) and a basal layer (stratum basale). Apart from keratinocytes—cells involved in keratinization—the five-layer epidermis also contains pigment cells and melanocytes, as well as Langerhans cells, mastocytes, and Merkel cells. It is closely connected to the dermis underneath by the basement membrane. The dermis, which comprises a papillary layer (primarily loose connective tissue) and a reticular layer (dense connective tissue), contains fibroblasts responsible for the production of collagen, elastin, and glycosaminoglycans (GAGs), as well as numerous blood vessels, nerve endings, and appendages, such as hair follicles and sweat and sebaceous glands. The subcutaneous tissue consists of loose connective tissue containing fat cells (adipocytes) forming fat lobules.

Features characteristic of mature skin include wrinkles, a loss of elasticity, changes in color, uneven pigmentation and discoloring, dryness, foci of abnormal epidermal keratosis, telangiectasias, susceptibility to irritation, and slower skin regeneration and healing. One of the most common dermatological and cosmetic concerns is skin ageing: a natural, complex process influenced by two mechanisms—intrinsic (genetic, chronological) ageing resulting from the passage of time, and extrinsic ageing (photoaging), caused by environmental factors (including UV radiation, environmental pollution and cigarette smoke). The two processes overlap and are closely linked to increased reactive oxygen species (ROS) and oxidative stress in the skin. Both the intrinsic and extrinsic processes are associated with biochemical disturbances (e.g., the excessive formation of oxygen radicals, leading to protein and DNA damage, amino acid racemization, and non-enzymatic glycosylation, leading to the abnormal cross-linking of collagen fibers and other structural proteins), as well as changes in the physical, morphological and physiological properties of the epidermis and dermis. These include disturbances in the function of the epidermal barrier, the flattening of the dermal–epidermal junction, a reduced number and activity of fibroblasts, the accumulation of abnormal elastin fibers (elastosis), and the impaired functioning of Langerhans cells. (Nutrients. 2021 Jan; 13(1): 203.)

Drug delivery platforms for neonatal brain injury

No Comments

Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury. (Journal of Controlled Release., Volume 330, 10 February 2021, Pages 765-787.)

Targeting the Brain Lesions Using Peptides: A Review Focused on the Possibility of Targeted Drug Delivery to Multiple Sclerosis Lesions

No Comments

As described by Jean Martin Charcot in 1868, multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS) which leads to permanent disability in patients. Following CNS insults, astrocytes and microglial cells undergo changes, which lead to scar formation in the site of injury. Owning to the pathophysiology of MS lesions, changes in both cellular and extracellular matrix (ECM) components occur over the progression of disease. In spite of advances in therapeutic approaches, drug delivery to MS lesions appears of great interest with big challenges and limitations. Targeting with peptides is a novel promising approach in the field of drug delivery. Recently peptides have been used for active targeting of different pathological disorders in which specific peptides make targeted accumulation of cargos to enhance local drug concentration at the pathological area, lead to increased therapeutic efficacy and decreased side effects. However, specific approaches for targeting the lesion in MS are still lacking. In this review, we discuss the changes of the ECM components as well as the cellular characteristics of demyelinated lesions and emphasis on opportunities for peptide based targeted drug delivery to highlight the possibility of such approaches for neurodegenerative disease with specific focus on MS.