Category: Science and technology

Therapeutic Properties of Bioactive Compounds from Different Honeybee Products

Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.(Front Pharmacol. 2017 Jun 28;8:412.)

Natural Ingredients Effective in the Management of Hyperpigmentation

BACKGROUND: Hyperpigmentation disorders are commonly encountered in dermatology clinics. Botanical and natural ingredients have gained popularity as alternative depigmenting products. OBJECTIVE: We sought to review clinical studies evaluating the use of different natural products in treating hyperpigmentation so clinicians are better equipped to educate their patients. Specific ingredients reviewed include azelaic acid, aloesin, mulberry, licorice extracts, lignin peroxidase, kojic acid, niacinamide, ellagic acid, arbutin, green tea, turmeric, soy, and ascorbic acid. METHODS: Systematic searches of PubMed and SCOPUS databases were performed in March 2016 using the various ingredient names, “melasma”and “hyperpigmentation.” Two reviewers independently screened titles, leading to the selection of 30 clinical studies. RESULTS: Review of the literature revealed few clinical trials that evaluated the treatment of hyperpigmentation with natural ingredients. Despite the limited evidence-based research, several natural ingredients did show efficacy as depigmenting agents, including azelaic acid, soy, lignin peroxidase, ascorbic acid iontophoresis, arbutin, ellagic acid, licorice extracts, niacinamide, and mulberry. CONCLUSION: The aforementioned ingredients show promise as natural treatments for patients with hyperpigmentation disorders. These agents might also provide clinicians and researchers with a way to further characterize the pathogenesis of dyschromia. However, the paucity of clinical studies is certainly a limitation. Additionally, many of the in-vivo studies are limited by the short length of the trials, and questions remain about the long-term efficacy and safety of the ingredients used in these studies. Lastly, we suggest a standardized objective scoring system be implemented in any further comparative studies.

Biotin conjugated organic molecules!

The main transporter for biotin is sodium dependent multivitamin transporter (SMVT), which is overexpressed in various aggressive cancer cell lines such as ovarian (OV 2008, ID8), leukemia (L1210FR), mastocytoma (P815), colon (Colo-26), breast (4T1, JC, MMT06056), renal (RENCA, RD0995), and lung (M109) cancer cell lines. Furthermore, its overexpression was found higher to that of folate receptor. Therefore, biotin demand in the rapidly growing tumors is higher than normal tissues. Several biotin conjugated organic molecules has been reported here for selective delivery of the drug in cancer cell. Biotin conjugated molecules are showing higher fold of cytotoxicity in biotin positive cancer cell lines than the normal cell. Nanoparticles and polymer surface modified drugs and biotin mediated cancer theranostic strategy was highlighted in this review. The cytotoxicity and selectivity of the drug in cancer cells has enhanced after biotin conjugation.(Eur J Med Chem. 2018 Feb 10;145:206-223. )

Phytocompound-based nanocosmeceuticals!

Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.

Phytobioactive compounds used in cosmeceuticals include catechins, gallic acids, epicatechins, curcumin, hydroxylbenzoic and cinnamic acids, quercetin, ascorbic acids, luteolin, alpha and beta carotene, complex polysaccharides, and fatty acids. These compounds, in addition to their cosmetic effects, enhance antibacterial, antifungal, anticarcinogenic, and anti-inflammatory biological actions. Even though various macrosized phytobioactive compounds are used in cosmeceutical formulations, their solubility and formulation type have limitations in enhancing the effect of phyto-based cosmeceuticals and therapy The major limitations of phyto-based cosmeceutical therapy include less skin penetration, lower prolongevity, less final quality and lower whitening effects. These qualities depend on the solubility and size of the active phytocompounds. This leads us in search of novel, highly promising technologies for enhanced skin health efficiency of cosmeceutical products. (Int J Nanomedicine. 2016; 11: 1987–2007.)

Natural Skin Whitening Agents!

Skin whitening products are commercially available for cosmetic purposes in order to obtain a lighter skin appearance. They are also utilized for clinical treatment of pigmentary disorders such as melasma or postinflammatory hyperpigmentation. Whitening agents act at various levels of melanin production in the skin. Many of them are known as competitive inhibitors of tyrosinase, the key enzyme in melanogenesis. Others inhibit the maturation of this enzyme or the transport of pigment granules (melanosomes) from melanocytes to surrounding keratinocytes. In this review we present an overview of (natural) whitening products that may decrease skin pigmentation by their interference with the pigmentary processes.

In the skin, melanocytes are situated on the basal layer which separates dermis and epidermis. One melanocyte is surrounded by approximately 36 keratinocytes. Together, they form the so-called epidermal melanin unit. The melanin produced and stored inside the melanocyte in the melanosomal compartment is transported via dendrites to the overlaying keratinocytes. The melanin pigment is a polymer produced inside the melanosomes and synthesised from the amino acid l-tyrosine that is converted by the enzyme tyrosinase to dopaquinone. This reaction continues spontaneously via dopachrome to the monomeric indolic precursors (5,6-dihydroxyindole and 5,6-dihydroxyindole 2-carboxylic acid) of the black-brown pigment eumelanin. However, some other enzymes, like the tyrosinase related proteins (TRP-1 and dopachrome tautomerase (TRP-2) may also play an important role in melanogenesis in vivo. Upon reaction with cysteine, dopaquinone forms 2- or 5-S-cysteinyldopa that generates the benzothiazine precursors of the red/yellow pheomelanin polymer. In general, a mixed type of pheo- and eumelanin polymer is produced and deposited onto the melanosomal matrix proteins. Considering the many colour variations that can be seen in the skin and hair, one may expect that the composition of the mixed melanins is regulated in many different ways. However, altered production of cutaneous melanin may cause considerable problems of esthetic nature, especially in hyperpigmentary conditions, like melasma, postinflammatory hyperpigmentation, freckles or lentigines. But also depigmenting conditions, like vitiligo, have high impact on the quality of life of the patients. (Int J Mol Sci. 2009 Dec; 10(12): 5326–5349.)