Author: novelconjugates

Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria

No Comments

The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacteriumacnes, Staphylococcusepidermidis, Staphylococcusaureus, and Pseudomonasaeruginosa. Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin). In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control). Chitosan-caffeic acid conjugate (CCA) showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL). Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P.aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC) indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC) values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris. (Mar Drugs. 2017 Jun 8;15(6).)

Cationic Oligospermine-Oligonucleotide Conjugates Provide Carrier-free Splice Switching in Monolayer Cells and Spheroids

No Comments

We report the evaluation of 18-mer 2′-O-methyl-modified ribose oligonucleotides with a full-length phosphorothioate backbone chemically conjugated at the 5′ end to the oligospermine units (Sn-: n = 5, 15, 20, 25, and 30 [number of spermine units]) as splice switching oligonucleotides (SSOs). These conjugates contain, in their structure, covalently linked oligocation moieties, making them capable of penetrating cells without transfection vector. In cell culture, we observed efficient cytoplasmic and nuclear delivery of fluorescein-labeled S20-SSO by fluorescent microscopy. The SSO conjugates containing more than 15 spermine units induced significant carrier-free exon skipping at nanomolar concentration in the absence and in the presence of serum. With an increasing number of spermine units, the conjugates became slightly toxic but more active. Advantages of these molecules were particularly demonstrated in three-dimensional (3D) cell culture (multicellular tumor spheroids [MCTSs]) that mimics living tissues. Whereas vector-complexed SSOs displayed a drastically reduced splice switching in MCTS compared with the assay in monolayer culture, an efficient exon skipping without significant toxicity was observed with oligospermine-grafted SSOs (S15- and S20-SSOs) transfected without vector. It was shown, by flow cytometry and confocal microscopy, that the fluorescein-labeled S20-SSO was freely diffusing and penetrating the innermost cells of MCTS, whereas the vector-complexed SSO penetrated only the cells of the spheroid’s outer layer.
We already reported the use of DMT-spermine phosphoramidite as a versatile reagent compatible with solid-phase oligonucleotide synthesis for the attachment of the desired number of spermine moieties to oligonucleotides, which allowed us to synthesize a variety of oligospermine-oligonucleotide conjugates (zip nucleic acids [ZNAs]). When ZNAs are hybridized to their complementary strands, the cationic oligospermine tail acts as a zipper to neutralize the polyanionic internucleotidic phosphates, thus enhancing binding affinity and binding kinetics. These biophysical properties can be finely tuned according to the number of attached spermine units, making ZNA a versatile PCR probe. ZNA is commercially available (number of spermine units <10) and used in numerous nucleic-acid-based diagnostic applications. Cationic oligospermines covalently attached to oligonucleotides can also act similarly to the polyamine-type delivery vectors. We described small interfering RNA (siRNA)-oligospermine conjugates containing 30 spermine units that induced an efficient carrier-free luciferase gene silencing. Locked nucleic acid (LNA)-oligospermine conjugates with nine spermine units were also reported as active cell-permeable oligonucleotides for antisense and antigene inhibition of gene expression. More recently, the oligospermine with 15 spermine units was attached to cyclic RGD (cRGD)-siRNA conjugate, thus enhancing the tumor cell-specific delivery. (Mol Ther Nucleic Acids. 2018 Dec 7; 13: 483–492.)

Oleoyl‐Estrone

No Comments

Oleoyl‐estrone (OE) is a powerful slimming agent that is also present in plasma and adipose tissue, where it is synthesized. It acts through the formation of a derivative W. OE effects (and W levels) are proportional to the dose. OE reduces food intake but maintains energy expenditure (thermogenesis). The energy gap is fulfilled with adipose tissue fat, sparing body protein and maintaining glycemia (and glycogen) with lower insulin and leptin levels. OE (in fact W) acts through specific receptors, different from those of estrogen. OE increases cholesterol catabolism, reducing hypercholesterolemia in obese rats. The main metabolic effect on adipose tissue is lowering of lipid synthesis, maintaining unchanged the intracellular lipolytic processes; the imbalance favors the progressive loss of fat, which is largely used by the muscle. OE administration induces additive effects with other antiobesity agents, such as β3‐adrenergic agonists, forcing a massive loss of lipid. Corticosteroids markedly limit OE action by altering the liver control of lipogenesis. OE also inhibits the action of 17β‐hydroxysteroid dehydrogenase, decreasing the synthesis of β‐estradiol and testosterone. Discontinuous treatment allows for maximal efficacy both in rats and humans. OE has the advantage that the loss of fat is maintained and does not require additional dietary limitations.
Oleoyl‐3‐estrone (OE) is the ester of oleic acid (cis‐Δ9–10 octadecenoic) and estrone. It has a waxy consistence and high hydrophobicity. It is insoluble in water, but soluble in dimethyl‐sulfoxide and most organic solvents and vegetable oils. It is soluble in pure ethanol and methanol, but small portions of water rapidly decrease its solubility. OE chemical synthesis is relatively simple; it is formed by the reaction of oleoyl‐chloride with estrone in an organic medium containing an organic base (i.e. pyridine) to take away the protons and facilitate the coupling. The yield, even at ultramicroescale conditions, exceeds 60–70%. OE purification from estrone and remaining oleoyl‐chloride is slightly more difficult, but high degrees of purity up to 98% can be easily achieved if the purity of the initial reagents is also high. Impure oleic acid (i.e. containing the trans isomer, elaidic acid, other fatty acids or methyl‐esters) results in a softer product that keeps most of these impurities difficult to eliminate. (Med Res Rev. 2012 Nov;32(6):1263-91.)

Targeted delivery of pixantrone to neutrophils by poly(sialic acid)-p-octadecylamine conjugate modified liposomes with improved antitumor activity

No Comments

Based on the knowledge that poly(sialic acid) is a critical element for tumour development and that the receptors for its monomer are expressed on neutrophils, which play important roles in the progression and invasion of tumours, a poly(sialic acid)-p-octadecylamine conjugate (PSA-p-ODA) was synthesised and used to modify the surface of liposomal pixantrone (Pix-PSL) to improve the delivery of Pix to peripheral blood neutrophils (PBNs). The liposomes were fabricated using a remote loading technology via a pH gradient, and were then assessed for particle size, encapsulation efficiency, in vitro release, in vitro cytotoxicity, and pharmacokinetics. Simultaneously, in vitro and in vivo cellular uptake studies demonstrated that Pix-PSL provided an enhanced accumulation of Pix in PBNs. An in vivo study showed that the anti-tumour activity of Pix-PSL was superior to that of other formulations, probably owing to the efficient targeting of PBNs by Pix-PSL, after which PBNs containing Pix-PSL (Pix-PSL/PBNs) in the circulatory system are recruited by the tumour microenvironment. These findings suggest that PSA-p-ODA-decorated liposomal Pix may provide a neutrophil-mediated drug delivery system (DDS) for the eradication of tumours, and thus represents a promising approach for the tumour targeting of chemotherapeutic treatments. (Int J Pharm. 2018 Aug 25;547(1-2):315-329.)

Superior anti-neoplastic activities of triacontanol-PEG conjugate: synthesis, characterization and biological evaluations

No Comments

Triacontanol (TA, C30H62O), abundantly present in plant cuticle waxes and bee waxes, has been found to display promising anti-neoplastic potentials. As a long chain fatty alcohol, TA possesses limited aqueous solubility, which hinders its medicinal application. To overcome its solubility barrier, a polymer prodrug was synthesized through attaching TA to poly ethylene glycol (PEG), using succinic acid as a linker with bifunctional amide and ester bonds. Anti-neoplastic effects of PEG-TA were assessed in LoVo and MCF7 cells, anti-proliferative and apoptosis-inducing activities were subsequently confirmed in mouse xenograft model. Encouragingly, PEG-TA possessed selective anti-cancer ability. It did not exhibit significant cytotoxicity on normal cells. Mechanistic examination revealed inhibition of NF-κB nuclear translocation, suppression on matrix degradation enzyme and down-regulation of angiogenic signaling might contribute to its anti-malignant effects. Pharmacokinetics clearly indicated PEGylated TA (named as mPEG2K-SA-TA) substantially enhanced TA delivery with increased plasma exposure (19,791 vs. 336.25 ng·mL−1·h−1,p < .001), mean residence time (8.46 vs. 2.95 h, p < .001) and elimination half-life (7.78 vs. 2.57 h, p < .001) compared to those of original TA. Moreover, mPEG2K-SA-TA appeared to be safe in preliminary toxicological assessment. PEGylated TA also emerged as a functional carrier to deliver hydrophobic chemotherapeutic agents, since it readily self-assembled to micelles in aqueous solution with a low critical micelle concentration (CMC, 19.1 µg·mL−1). Conclusively, PEG-TA conjugate displayed superior anti-neoplastic activities and low toxicity, as well as facilitated the delivery of other hydrophobic agents, which appeared to be an innovative strategy for cancer therapy. (Drug Deliv. 2018; 25(1): 1546–1559.)

Maslinic acid derivatives induce significant apoptosis in b16f10 murine melanoma cells

No Comments

Maslinic acid (2α,3β-dihydroxyolean-12-en-28-oic acid), a natural dihydroxylated pentacyclic triterpene acid isolated from olive-pressing residues, has been investigated together with some of its derivatives regarding the induction of apoptosis in B16F10 melanoma cells. Some of the compounds tested are described in this work, but others come from previous studies. Ten of these derivatives induce over 80% of apoptosis, clearly promoting cell death in B16F10 melanoma. By contrast, the induction cell death through necrosis was very slightly significant with these compounds. These results indicate that maslinic acid derivatives are promising chemopreventive and chemotherapeutic agents. (European Journal of Medicinal Chemistry. Volume 46, Issue 12, December 2011, Pages 5991-6001.)

Synthesis of acyl oleanolic acid-uracil conjugates and their anti-tumor activity

No Comments

Oleanolic acid, which can be isolated from many foods and medicinal plants, has been reported to possess diverse biological activities. It has been found that the acylation of the hydroxyl groups of the A-ring in the triterpene skeleton of oleanolic acid could be favorable for biological activities. The pyrimidinyl group has been constructed in many new compounds in various anti-tumor studies. Results: Five acyl oleanolic acid-uracil conjugates were synthesized. Most of the IC50 values of these conjugates were lower than 10.0 μM, and some of them were even under 0.1 μM. Cytotoxicity selectivity detection revealed that conjugate 4c exhibited low cytotoxicity towards the normal human liver cell line HL-7702. Further studies revealed that 4c clearly possessed apoptosis inducing effects, could arrest the Hep-G2 cell line in the G1 phase, induce late-stage apoptosis, and activate effector caspase-3/9 to trigger apoptosis. Conclusions: Conjugates of five different acyl OA derivatives with uracil were synthesized and identified as possessing high selectivity toward tumor cell lines. These conjugates could induce apoptosis in Hep-G2 cells by triggering caspase-3/9 activity. (Chem Cent J. 2016; 10: 69.)

Synthesis and in vitro antiproliferative evaluation of PEGylated triterpene acids

No Comments

A set of PEGylated derivatives of oleanolic and maslinic acids has been semi-synthesised, attaching ethylene glycol, diethylene glycol, triethylene glycol or tetraethylene glycol to the C-28 carboxyl group of these natural triterpenes and some derivatives. Another set of PEGylated derivatives has been semi-synthesised by connecting the same four ethylene glycols to the hydroxyl groups of the A ring of these triterpenic acids, through a carbonate linker, by reaction with trichloromethyl chloroformate. The aqueous solubility of some of these PEGylated derivatives has been compared with that of maslinic acid. The cytotoxic effects of 28 triterpenic PEGylated derivatives in three cancer-cell lines (B16-F10, HT29, and Hep G2) have been assayed. The best results have been achieved with the HT29 cell line, and specifically with the oleanolic acid derivatives having ethylene glycol or tetraethylene glycol attached to the C-28 carboxyl group, which are approximately 27-fold more effective than their natural precursor. Eight PEGylated derivatives have been selected to compare the cytotoxicity results in the HT29 cancer-cell line with those of a non-tumour cell line of the same tissue (IEC-18), four of which were less cytotoxic in the non-tumour cell line. These compounds showed apoptotic effects on treated cells, with percentages of total apoptosis between 20% and 53%, relative to control, at 72 h and IC50 concentration, and between 29% to 62%, relative to control, for the same time and IC80 concentration. We have also found that with the treatment of these compounds in HT29 cancer cells, cell-cycle arrest occurred in the G0/G1 phase. Finally, we have also studied changes in mitochondrial membrane potential during apoptosis of HT29 cancer cells, and the results suggest an activation of the extrinsic apoptotic pathway for these compounds. (Fitoterapia. Volume 120, July 2017, Pages 25-40.)