Day: December 23, 2020

Self-nanoemulsifying drug delivery systems as novel approach for pDNA drug delivery

No Comments

It was the aim of this study to investigate a novel strategy for oral gene delivery utilizing a self-nanoemulsifying drug delivery system (SNEDDS). After hydrophobic ion pairing a plasmid was incorporated into SNEDDS. The mean droplet size of resulting nanoemulsions was determined to be between 45.8 and 47.5 nm. A concentration dependent cytotoxicity of the formulations was found on HEK-293 cells via MTT assay. Degradation studies via DNase I showed that incorporation into SNEDDS led to significantly, up to 8-fold prolonged resistant time against enzymatic digestion compared to naked pDNA and pDNA–lipid complexes. Transfection studies carried out revealed a significantly improved transfection compared to naked pDNA. Further, no decrease in transfection efficiency compared to transfection using Lipofectin® transfection reagent was observed. (International Journal of Pharmaceutics. Volume 487, Issues 1–2, 20 June 2015, Pages 25-31.)

Impact of different hydrophobic ion pairs of octreotide on its oral bioavailability in pigs

No Comments

The objective of this study was to investigate the impact of different hydrophobic ion pairs (HIP) on the oral bioavailability of the model drug octreotide in pigs.

Octreotide was ion paired with the anionic surfactants deoxycholatedecanoate and docusate differing in lipophilicity. These hydrophobic ion pairs were incorporated in self-emulsifying drug delivery systems (SEDDS) based on BrijO10, octyldodecanol, propylene glycol and ethanol in a concentration of 5 mg/ml. SEDDS were characterized regarding size distribution, zeta potential, stability towards lipase, log DSEDDS/release medium and mucus diffusion behavior. The oral bioavailability of octreotide was evaluated in pigs via LC-MS/MS analyses.

Most efficient ion pairing was achieved at a molar ratio of 1:3 (peptide: surfactant). SEDDS containing the octreotide-deoxycholate, -decanoate and -docusate ion pair exhibited a mean droplet size of 152 nm, 112 nm and 191 nm and a zeta potential of − 3.7, − 4.6 and − 5.7 mV, respectively. They were completely stable towards degradation by lipase and showed a log DSEDDS/release medium of 1.7, 1.8 and 2.7, respectively. The diffusion coefficient of these SEDDS was in the range of 0.03, 0.11 and 0.17 × 10− 9 cm2/s, respectively. In vivo studies with these HIPs showed no improvement in the oral bioavailability in case of octreotide-decanoate. In contrast, octreotide-deoxycholate and octreotide-docusate SEDDS resulted in a 17.9-fold and 4.2-fold higher bioavailability vs. control.

According to these results, hydrophobic ion pairing could be identified as a key parameter for SEDDS to achieve high oral bioavailability. (Journal of Controlled Release. Volume 273, 10 March 2018, Pages 21-29.)