Month: December 2019

New phosphorylating reagents for deoxyribonucleosides and oligonucleotides

New phosphorylating reagents 1 and 2 were prepared in three steps from 4-hydroxybenzaldehyde. They showed good efficiency in the solid phase synthesis of 5′-phosphate monoester nucleosides. End-phosphate DNA sequence synthesis demonstrated the efficiency of the new reagents (1 and 2) according to the general procedure of automated DNA synthesis. The oxidation of P(III) to P(V) and the removal of benzyl protecting groups were achieved in a single step by treatment with a 0.02 M I2/pyridine/H2O solution. Due to this one-pot treatment, it is possible to use the phosphorylating reagents (1 and 2) for the synthesis of base-sensitive ODNs. The reagents 1 and 2 are unique among phosphorylating reagents.

A versatile reagent for the synthesis of 5′-phosphorylated, 5′-thiophosphorylated or 5′-phosphoramidate-conjugated oligonucleotides

We report the synthesis of a new phosphorylating reagent that is easily accessible and allows not only the chemical synthesis of 5′-phosphorylated and 5′-thiophosphorylated oligonucleotides but also the 5′-conjugation through a phosphoramidate linkage. 5′-Amino-linker and 5′-alkyne oligonucleotides were obtained and the latter was conjugated by a 1,3-dipolar cycloaddition (click chemistry) with a galactosylated azide derivative to afford 5′-galactosyl oligonucleotide with high efficiency.